1,758 research outputs found

    Cohesive Traction-Separation Laws for Tearing of Ductile Metal Plates

    Get PDF
    The failure process ahead of a mode I crack advancing in a ductile thin metal plate or sheet produces plastic dissipation through a sequence of deformation steps that include necking well ahead of the crack tip and shear localization followed by a slant fracture in the necked region somewhat closer to the tip. The objective of this paper is to analyze this sequential process to characterize the traction–separation behavior and the associated effective cohesive fracture energy of the entire failure process. The emphasis is on what is often described as plane stress behavior taking place after the crack tip has advanced a distance of one or two plate thicknesses. Traction–separation laws are an essential component of finite element methods currently under development for analyzing fracture of large scale plate or shell structures. The present study resolves the sequence of failure details using the Gurson constitutive law based on the micromechanics of the ductile fracture process, including a recent extension that accounts for damage growth in shear. The fracture process in front of an advancing crack, subject to overall mode I loading, is approximated by a 2D plane strain finite element model, which allows for an intensive study of the parameters influencing local necking, shear localization and the final slant failure. The deformation history relevant to a cohesive zone for a large scale model is identified and the traction–separation relation is determined, including the dissipated energy. For ductile structural materials, the dissipation generated during necking prior to the onset of shear localization is the dominant contribution; it scales with the plate thickness and is mesh-independent in the present numerical model. The energy associated with the shear localization and fracture is secondary; it scales with the width of the shear band, and inherits the finite element mesh dependency of the Gurson model. The cohesive traction–separation laws have been characterized for various material conditions.Engineering and Applied Science

    A lambda calculus for quantum computation with classical control

    Full text link
    The objective of this paper is to develop a functional programming language for quantum computers. We develop a lambda calculus for the classical control model, following the first author's work on quantum flow-charts. We define a call-by-value operational semantics, and we give a type system using affine intuitionistic linear logic. The main results of this paper are the safety properties of the language and the development of a type inference algorithm.Comment: 15 pages, submitted to TLCA'05. Note: this is basically the work done during the first author master, his thesis can be found on his webpage. Modifications: almost everything reformulated; recursion removed since the way it was stated didn't satisfy lemma 11; type inference algorithm added; example of an implementation of quantum teleportation adde

    Using a Dynamic Model to Simulate the Heuristic Evaluation of Usability

    Get PDF
    Among usability inspection methods, heuristic evaluation, or expert evaluation, is considered the most used and well-known usability evaluation method. The number of evaluators and their expertise are essential aspects that affect the quality of the evaluation, the cost that its application generates, and the time that it is necessary to spend. This paper presents a dynamic simulation model to analyze how different configurations of evaluator team have an effect upon the results of the heuristic evaluation method. One of the main advantages of using a dynamic simulation model is the possibility of trying out different decisions before carrying them out, and change them during the simulation of the evaluation process.Ministerio de Educación y Ciencia QSimTest TIN2007-67843-C06 03Ministerio de Educación y Ciencia TIN2007-67843-C06-0

    The treatment of primary tumors of the femur with chemotherapy (if indicated), resection and reconstruction with an endoprosthesis

    Get PDF
    The treatment protocol of 15 patients with a primary tumor of the femur, including osteosarcoma, malignant fibrous histiocytoma and chondrosar-coma is presented. All patients had been selected for resection and reconstruction with an endoprosthesis. An endoprothesis was implanted in 12 patients. \ud The results of this type of treatment appear to be satisfactory. In eight osteosarcoma cases resection and reconstruction with an endoprosthesis combined with preoperative and postoperative chemotherapy, according to Rosen, were performed. Follow-up in all 15 patients, varying from 1.4 to 6.0 years, showed no evidence of disease in 12 patients. Three patients had died. Function of the involved leg was satisfactory in most cases. \ud The advantage and disadvantages of the use of an endoprosthesis are discussed as well as complications in this series of patients

    Technologies for restricting mould growth on baled silage

    Get PDF
    End of project reportSilage is made on approximately 86% of Irish farms, and 85% of these make some baled silage. Baled silage is particularly important as the primary silage making, storage and feeding system on many beef and smaller sized farms, but is also employed as a secondary system (often associated with facilitating grazing management during mid-summer) on many dairy and larger sized farms (O’Kiely et al., 2002). Previous surveys on farms indicated that the extent of visible fungal growth on baled silage was sometimes quite large, and could be a cause for concern. Whereas some improvements could come from applying existing knowledge and technologies, the circumstances surrounding the making and storage of baled silage suggested that environmental conditions within the bale differed from those in conventional silos, and that further knowledge was required in order to arrive at a secure set of recommendations for baled silage systems. This report deals with the final in a series (O’Kiely et al., 1999; O’Kiely et al., 2002) of three consecutive research projects investigating numerous aspect of the science and technology of baled silage. The success of each depended on extensive, integrated collaboration between the Teagasc research centres at Grange and Oak Park, and with University College Dublin. As the series progressed the multidisciplinary team needed to underpin the programme expanded, and this greatly improved the amount and detail of the research undertaken. The major objective of the project recorded in this report was to develop technologies to improve the “hygienic value” of baled silage

    Hastings' additivity counterexample via Dvoretzky's theorem

    Full text link
    The goal of this note is to show that Hastings' counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies.Comment: 12 pages; v.2: added references, Appendix A expanded to make the paper essentially self-containe

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Black Hole Evaporation in the Presence of a Short Distance Cutoff

    Full text link
    A derivation of the Hawking effect is given which avoids reference to field modes above some cutoff frequency ωcM1\omega_c\gg M^{-1} in the free-fall frame of the black hole. To avoid reference to arbitrarily high frequencies, it is necessary to impose a boundary condition on the quantum field in a timelike region near the horizon, rather than on a (spacelike) Cauchy surface either outside the horizon or at early times before the horizon forms. Due to the nature of the horizon as an infinite redshift surface, the correct boundary condition at late times outside the horizon cannot be deduced, within the confines of a theory that applies only below the cutoff, from initial conditions prior to the formation of the hole. A boundary condition is formulated which leads to the Hawking effect in a cutoff theory. It is argued that it is possible the boundary condition is {\it not} satisfied, so that the spectrum of black hole radiation may be significantly different from that predicted by Hawking, even without the back-reaction near the horizon becoming of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure
    corecore