4,760 research outputs found
Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat.
Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventricular trabeculae from SHR-F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR-NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR-F differed little from that of the SHR-NF, both SHR groups performed less stress-length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca(2+) cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension-induced left-ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced
Single-Component Electroactive Polymer Architectures for Non-Enzymatic Glucose Sensing.
Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly
Mean effective sensitivity for Mycobacterium avium subsp. paratuberculosis infection in cattle herds
Recommended from our members
How predation and landscape fragmentation affect vole population dynamics
Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable
populations. The gradient has often been attributed to changes in the interactions between microtines and their predators.
Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species,
it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding
season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating
population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in
the field. The distinction is here attempted using realistic agent-based modelling.
Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and
ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities
whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical
autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of
altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the
presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator
assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the
oscillations.
Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results
allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the
reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape
fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in
future analyses of vole dynamics
Scaling of Entanglement close to a Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by
analyzing the properties of the concurrence for a class of exactly solvable
models in one dimension. We find that entanglement can be classified in the
framework of scaling theory. Further, we reveal a profound difference between
classical correlations and the non-local quantum correlation, entanglement: the
correlation length diverges at the phase transition, whereas entanglement in
general remains short ranged.Comment: 4 pages, 4 figures, revtex. Stylistic changes and format modifie
How do general practitioners experience providing care to refugees with mental health problems? A qualitative study from Denmark
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Causarum Investigatio and the Two Bell's Theorems of John Bell
"Bell's theorem" can refer to two different theorems that John Bell proved,
the first in 1964 and the second in 1976. His 1964 theorem is the
incompatibility of quantum phenomena with the joint assumptions of Locality and
Predetermination. His 1976 theorem is their incompatibility with the single
property of Local Causality. This is contrary to Bell's own later assertions,
that his 1964 theorem began with the assumption of Local Causality, even if not
by that name. Although the two Bell's theorems are logically equivalent, their
assumptions are not. Hence, the earlier and later theorems suggest quite
different conclusions, embraced by operationalists and realists, respectively.
The key issue is whether Locality or Local Causality is the appropriate notion
emanating from Relativistic Causality, and this rests on one's basic notion of
causation. For operationalists the appropriate notion is what is here called
the Principle of Agent-Causation, while for realists it is Reichenbach's
Principle of common cause. By breaking down the latter into even more basic
Postulates, it is possible to obtain a version of Bell's theorem in which each
camp could reject one assumption, happy that the remaining assumptions reflect
its weltanschauung. Formulating Bell's theorem in terms of causation is
fruitful not just for attempting to reconcile the two camps, but also for
better describing the ontology of different quantum interpretations and for
more deeply understanding the implications of Bell's marvellous work.Comment: 24 pages. Prepared for proceedings of the "Quantum [Un]speakables II"
conference (Vienna, 2014), to be published by Springe
- …