34,752 research outputs found

    Fast and robust two-qubit gates for scalable ion trap quantum computing

    Full text link
    We propose a new concept for a two-qubit gate operating on a pair of trapped ions based on laser coherent control techniques. The gate is insensitive to the temperature of the ions, works also outside the Lamb-Dicke regime, requires no individual addressing by lasers, and can be orders of magnitude faster than the trap period

    Gravi-Weak Unification and the Black-Hole-Hedgehog's Solution with Magnetic Field Contribution

    Full text link
    In the present paper, we investigated the gravitational black-hole-hedgehog's solution with magnetic field contribution in the framework of the f(R)--gravity described by the Gravi-Weak unification model. Assuming the Multiple Point Principle (MPP), we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum with v1≈246v_1 \approx 246 GeV ("true vacuum"), and the second Planck scale ("false vacuum") with v2∼1018v_2 \sim 10^{18} GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehog configurations as defects of the "false vacuum". We have obtained the solution which corresponds to a global monopole, that has been "swallowed" by the black-hole with core mass MBH≈3.65×1018  GeVM_{BH}\approx 3.65\times 10^{18}\,\, {\rm{GeV}} and radius δ≈6⋅10−21GeV−1.\delta \approx 6\cdot 10^{-21} {\rm{GeV}}^{-1}. We investigated the metric in the vicinity of the black-hole-hedgehog and estimated its horizon radius: rh≈1.14δr_h\approx 1.14 \delta. We have considered the phase transition from the "false vacuum" to the "true vacuum" and confirmed the stability of the EW--vacuum.Comment: 22 pages. arXiv admin note: text overlap with arXiv:1703.05594, arXiv:1801.06979, arXiv:1605.01169; text overlap with arXiv:1002.4275 by other author

    Entanglement Detection Using Majorization Uncertainty Bounds

    Full text link
    Entanglement detection criteria are developed within the framework of the majorization formulation of uncertainty. The primary results are two theorems asserting linear and nonlinear separability criteria based on majorization relations, the violation of which would imply entanglement. Corollaries to these theorems yield infinite sets of scalar entanglement detection criteria based on quasi-entropic measures of disorder. Examples are analyzed to probe the efficacy of the derived criteria in detecting the entanglement of bipartite Werner states. Characteristics of the majorization relation as a comparator of disorder uniquely suited to information-theoretical applications are emphasized throughout.Comment: 10 pages, 1 figur

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe

    Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals

    Full text link
    We consider the classical magnetoresistance of a Weyl metal in which the electron Fermi surface possess nonzero fluxes of the Berry curvature. Such a system may exhibit large negative magnetoresistance with unusual anisotropy as a function of the angle between the electric and magnetic fields. In this case the system can support a new type of plasma waves. These phenomena are consequences of chiral anomaly in electron transport theory.Comment: 4 pages, 2 figure

    Topological Structure of the Vacuum, Cosmological Constant and Dark Energy

    Full text link
    In this review we present a theory of cosmological constant and Dark Energy (DE), based on the topological structure of the vacuum. The Multiple Point Principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsen's prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We also considered B.G. Sidharth's theory of cosmological constant based on the non-commutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua - the Planck scale phase and Electroweak (EW) phase - also is reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by B.G. Sidharth was discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming that the recently discovered at the LHC new resonance with mass mS≃750m_S \simeq 750 GeV is a new scalar SS bound state 6t+6tˉ6t + 6\bar t, earlier predicted by C.D. Froggatt, H.B. Nielsen and L.V. Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.Comment: 37 pages and 7 figures. arXiv admin note: text overlap with arXiv:1601.03231; text overlap with arXiv:1302.2716 by other author

    Multiple Quantum NMR and Entanglement Dynamics in Dipolar Coupling Spin

    Full text link
    We investigate numerically the time dependence of the multiple quantum coherences and entanglement in linear chains up to nine nuclear spins of 1/2 coupled by the dipole-dipole interactions. Two models are considered: (1) a spin chain with nearest-neighbor dipole -dipole interactions; (2) a more realistic model with interactions between all spins. It is shown that the entangled states appear between remote particles which do not interact directly (model 1), while the interaction between all spins (model 2) not always results in entanglement between remote spins.Comment: 14 pages, 3 figures. accepted for publication in Physical Review
    • …
    corecore