1,280 research outputs found

    On the distribution of stellar-sized black hole spins

    Get PDF
    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X-ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels.Comment: 4 pages, 2 figures, pre-GW150914 detection, refereed and accepted contribution to proceedings of 11th Edoardo Amaldi Conference on Gravitational Waves, June 2015, Gwangju, Kore

    Black holes without boundaries

    Full text link
    We discuss some of the drawbacks of using event horizons to define black holes and suggest ways in which black holes can be described without event horizons, using trapping horizons. We show that these trapping horizons give rise to thermodynamic behavior and possibly Hawking radiation too. This raises the issue of whether the event horizon or the trapping horizon should be seen as the true boundary of a black hole. This difference is important if we believe that quantum gravity will resolve the central singularity of the black hole and clarifies several of the issues associated with black hole thermodynamics and information loss.Comment: 8 pages. Invited essay for special edition of the International Journal of Modern Physics

    Black Holes without Event Horizons

    Full text link
    We discuss some of the drawbacks of using event horizons to define black holes. The reasons are both practical, physical and theoretical. We argue that locally defined trapping horizons can remedy many of these drawbacks. We examine of the question of whether black hole thermodynamics should be associated with event horizons or trapping horizons. To this end we discuss what role trapping horizons may play in black hole thermodynamics. In addition, we show how trapping horizons may give rise to Hawking radiation and discuss the issue of gravitational entropy.Comment: Talk at APCTP Winter School, Daejeon, Korea, 2008. 7 pages, no figure

    Non-minimally coupled multi-scalar black holes

    Full text link
    We study the static, spherically symmetric black hole solutions for a non-minimally coupled multi-scalar theory. We find numerical solutions for values of the scalar fields when a certain constraint on the maximal charge is satisfied. Beyond this constraint no black hole solutions exist. This constraint therefore corresponds to extremal solutions, however, this does not match the \kappa = 0 constraint which typically indicates extremal solutions in other models. This implies that the set of extremal solutions have non-zero, finite and varying surface gravity. These solutions also violate the no-hair theorems for N>1 scalar fields and have previously been proven to be linearly stable.Comment: 6 pages, 4 figure

    The slicing dependence of non-spherically symmetric quasi-local horizons in Vaidya Spacetimes

    Get PDF
    It is well known that quasi-local black hole horizons depend on the choice of a time coordinate in a spacetime. This has implications for notions such as the surface of the black hole and also on quasi-local physical quantities such as horizon measures of mass and angular momentum. In this paper, we compare different horizons on non-spherically symmetric slicings of Vaidya spacetimes. The spacetimes we investigate include both accreting and evaporating black holes. For some simple choices of the Vaidya mass function function corresponding to collapse of a hollow shell, we compare the area for the numerically found axisymmetric trapping horizons with the area of the spherically symmetric trapping horizon and event horizon. We find that as expected, both the location and area are dependent on the choice of foliation. However, the area variation is not large, of order 0.035%0.035\% for a slowly evolving horizon with mË™=0.02\dot{m}=0.02. We also calculate analytically the difference in area between the spherically symmetric quasi-local horizon and event horizon for a slowly accreting black hole. We find that the difference can be many orders of magnitude larger than the Planck area for sufficiently large black holes.Comment: 10 pages, 5 figures, corrected minor typo

    Skyrme Black Holes in the Isolated Horizons Formalism

    Full text link
    We study static, spherically symmetric, Skyrme black holes in the context of the assumption that they can be viewed as bound states between ordinary bare black holes and solitons. This assumption and results stemming from the isolated horizons formalism lead to several conjectures about the static black hole solutions. These conjectures are tested against the Skyrme black hole solutions. It is shown that, while there is in general good agreement with the conjectures, a crucial aspect seems to violate one of the conjectures.Comment: Full journal version, 6 pages, 5 figure

    Advanced LIGO's ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections

    Full text link
    We study the ability of the advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem. The cosmic censorship conjecture, which is believed to be true in the theory of general relativity, limits the spin-to-mass-squared ratio of a Kerr black hole. The no-hair theorem, which is also believed to be true in the theory of general relativity, suggests a particular value for the tidal Love number of a non-rotating black hole. Using the Fisher matrix formalism, we examine the measurability of the spin and tidal deformability of compact binary systems involving at least one putative black hole. Using parameter measurement errors and correlations obtained from the Fisher matrix, we determine the smallest detectable violation of bounds implied by the cosmic censorship conjecture and the no-hair theorem. We examine the effect of excluding unphysical areas of parameter space when determining the smallest detectable apparent violations, and we examine the effect of different post-Newtonian corrections to the amplitude of the compact binary coalescence gravitational waveform. In addition, we perform a brief study of how the recently calculated 3.0 pN and 3.5 pN spin-orbit corrections to the phase affect spin and mass parameter measurability. We find that physical priors on the symmetric mass ratio and higher harmonics in the gravitational waveform could significantly affect the ability of aLIGO to investigate cosmic censorship and the no-hair theorem for certain systems.Comment: 21 pages, 7 figures, 6 table
    • …
    corecore