6,497 research outputs found

    Controlled and combined remote implementations of partially unknown quantum operations of multiqubits using GHZ states

    Full text link
    We propose and prove protocols of controlled and combined remote implementations of partially unknown quantum operations belonging to the restricted sets [An Min Wang: PRA, \textbf{74}, 032317(2006)] using GHZ states. We detailedly describe the protocols in the cases of one qubit, respectively, with one controller and with two senders. Then we extend the protocols to the cases of multiqubits with many controllers and two senders. Because our protocols have to demand the controller(s)'s startup and authorization or two senders together working and cooperations, the controlled and combined remote implementations of quantum operations definitely can enhance the security of remote quantum information processing and potentially have more applications. Moreover, our protocol with two senders is helpful to farthest arrive at the power of remote implementations of quantum operations in theory since the different senders perhaps have different operational resources and different operational rights in practice.Comment: 26 pages, the submitted versio

    Scheme for remote implementation of partially unknown quantum operation of two qubits in cavity QED

    Get PDF
    By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits [An Min Wang: PRA, \textbf{74}, 032317(2006)], we present a scheme to implement it in cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction between the atoms and the field of cavity is a nonresonant one. Finally, we analyze the experimental feasibility of this scheme.Comment: 7 pages, 2 figure

    A definitive number of atoms on demand: controlling the number of atoms in a-few-atom magneto-optical trap

    Full text link
    A few 85Rb atoms were trapped in a micron-size magneto-optical trap with a high quadrupole magnetic-field gradient and the number of atoms was precisely controlled by suppressing stochastic loading and loss events via real-time feedback on the magnetic field gradient. The measured occupation probability of single atom was as high as 99%. Atoms up to five were also trapped with high occupation probabilities. The present technique could be used to make a deterministic atom source.Comment: 3 pages, 4 figure

    Non-Markovian effect on the quantum discord

    Full text link
    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. It implies that the quantum discord is more useful than the entanglement to describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure

    On the group theoretic structure of a class of quantum dialogue protocols

    Full text link
    Intrinsic symmetry of the existing protocols of quantum dialogue are explored. It is shown that if we have a set of mutually orthogonal nn-qubit states {\normalsize {∣ϕ0>,∣ϕ1>,....,∣ϕi}\{|\phi_{0}>,|\phi_{1}>,....,|\phi_{i}\} and a set of m−qubitm-qubit (m≤nm\leq n) unitary operators {U0,U2,...,U2n−1}:Ui∣ϕ0>=∣ϕi>\{U_{0},U_{2},...,U_{2^{n}-1}\}:U_{i}|\phi_{0}>=|\phi_{i}> and {U0,U2,...,U2n−1}\{U_{0},U_{2},...,U_{2^{n}-1}\} forms a group under multiplication then it would be sufficient to construct a quantum dialogue protocol using this set of quantum states and this group of unitary operators}. The sufficiency condition is used to provide a generalized protocol of quantum dialogue. Further the basic concepts of group theory and quantum mechanics are used here to systematically generate several examples of possible groups of unitary operators that may be used for implementation of quantum dialogue. A large number of examples of quantum states that may be used to implement the generalized quantum dialogue protocol using these groups of unitary operators are also obtained. For example, it is shown that GHZ state, GHZ-like state, W state, 4 and 5 qubit Cluster states, Omega state, Brown state, Q4Q_{4} state and Q5Q_{5} state can be used for implementation of quantum dialogue protocol. The security and efficiency of the proposed protocol is appropriately analyzed. It is also shown that if a group of unitary operators and a set of mutually orthogonal states are found to be suitable for quantum dialogue then they can be used to provide solutions of socialist millionaire problem.Comment: 15 page
    • …
    corecore