104 research outputs found

    A latent model for collaborative filtering

    Get PDF

    Inducing Gaussian Process Networks

    Full text link
    Gaussian processes (GPs) are powerful but computationally expensive machine learning models, requiring an estimate of the kernel covariance matrix for every prediction. In large and complex domains, such as graphs, sets, or images, the choice of suitable kernel can also be non-trivial to determine, providing an additional obstacle to the learning task. Over the last decade, these challenges have resulted in significant advances being made in terms of scalability and expressivity, exemplified by, e.g., the use of inducing points and neural network kernel approximations. In this paper, we propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points. The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains while also facilitating scalable gradient-based learning methods. We consider both regression and (binary) classification tasks and report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods. We also demonstrate how IGNs can be used to effectively model complex domains using neural network architectures

    Active Learning of Markov Decision Processes for System Verification

    Get PDF

    A latent model for collaborative filtering

    Get PDF
    AbstractRecommender systems based on collaborative filtering have received a great deal of interest over the last two decades. In particular, recently proposed methods based on dimensionality reduction techniques and using a symmetrical representation of users and items have shown promising results. Following this line of research, we propose a probabilistic collaborative filtering model that explicitly represents all items and users simultaneously in the model. Experimental results show that the proposed system obtains significantly better results than other collaborative filtering systems (evaluated on the MovieLens data set). Furthermore, the explicit representation of all users and items allows the model to e.g. make group-based recommendations balancing the preferences of the individual users

    Probabilistic decision graphs for optimization under uncertainty

    Get PDF

    Probabilistic decision graphs for optimization under uncertainty

    Get PDF

    Multi-currency Influence Diagrams

    Get PDF
    • …
    corecore