400 research outputs found

    Geochemical evidence for mélange melting in global arcs

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1602402, doi:10.1126/sciadv.1602402.In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of geochemical data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with models that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mĂ©lange, before arc magmas are generated.This work was supported by the NSF (EAR-1119373 to S.G.N., EAR-1427310 to S.G.N. and H.R.M., and EAR-1348063 to H.R.M. and G. Gaetani) and Woods Hole Oceanographic Institution–Ocean Exploration Institute (to H.R.M. and G. Gaetani)

    Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1701020, doi:10.1126/sciadv.1701020.The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation.We would like to acknowledge support from the NSF grant OCE 1434785 (to J.D.O. and S.G.N.), the NASA Exobiology grant NNX16AJ60G (to J.D.O. and S.G.N.), a WHOI Summer Student Fellowship (to C.M.O.), and an Agouron Postdoctoral Fellowship (to J.D.O.). This material is based on work supported by the NSF Graduate Research Fellowship Program under grant no. 026257-001

    Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters, 430 (2015): 511-522, doi:10.1016/j.epsl.2015.07.027.The marine biogeochemical cycle of Ba is thought to be controlled by particulate BaSO4 (barite) precipitation associated with the microbial oxidation of organic carbon and its subsequent dissolution in the BaSO4-undersaturated water column. Despite many of these processes being largely unique to Ba cycling, concentrations of Ba and Si in seawater exhibit a strong linear correlation. The reasons for this correlation are ambiguous, as are the depth ranges corresponding to the most active BaSO4 cycling and the intermediate sources of Ba to particulate BaSO4. Stable isotopic analyses of dissolved Ba in seawater should help address these issues, as Ba-isotopic compositions are predicted to be sensitive to the physical and biogeochemical process that cycle Ba. We report a new methodology for the determination of dissolved Ba-isotopic compositions in seawater and results from a 4, 500 m depth profile in the South Atlantic at 39.99 S, 0.92 E that exhibit oceanographically-consistent variation with depth. These data reveal that water masses obtain their [Ba] and Ba-isotopic signatures when at or near the surface, which relates to the cycling of marine BaSO4. The shallow origin of these signatures requires that the substantial Ba-isotopic variations in the bathypelagic zone were inherited from when those deep waters were last ventilated. Indeed, the water column below 600 m is well explained by conservative mixing of water masses with distinct [Ba] and Ba-isotopic compositions. This leads us to conclude that large scale oceanic circulation is important for sustaining the similar oceanographic distributions of Ba and Si in the South Atlantic, and possibly elsewhere. These data demonstrate that the processes of organic carbon oxidation, BaSO4 cycling, and Ba-isotopic fractionation in seawater are closely coupled, such that Ba-isotopic analyses harbor great potential as a tracer of the carbon cycle in the modern and paleo-oceans.T.J.H. acknowledges support from Makoto A. Saito (Gordon and Betty Moore Foundation; Project # 3782) and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation. Development of Ba-isotopic protocols at NIRVANA was made possible with funding from The Andrew W. Mellon Foundation Endowed Fund for Innovative Research (T.J.H. and S.G.N.)

    Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Royal Society of Chemistry for personal use, not for redistribution. The definitive version was published in Journal of Analytical Atomic Spectrometry 31 (2016): 531-536 , doi:10.1039/C5JA00397K.We present and verify a new method to measure vanadium isotope ratios using a Thermo Scientific Neptune multi-collector inductively-coupled plasma mass spectrometer (MCICP- MS) operated in medium mass resolution mode. We collect masses 48 through 53 simultaneously using the L2, L1, Center, H1, H2 and H3 collectors. The Center cup is equipped with a 1012 ; resistor, H1 is equipped with a 1010 ; resistor, while the rest of the collectors have standard 1011 ; resistors. Unlike previous low-resolution methods, the use of medium mass resolution (=M/M ~ 4,000) permits separation of V, Ti and Cr isotopes from all interfering molecular species representing combinations of C, N, O, S, Cl, and Ar. We show that the external reproducibility follows a power law function with respect to the number of V+ ions collected and achieve an external reproducibility of ± 0.15 ‰ with total V+ ion beam intensities of ~ 1 nA. The separation of interfering molecular species from the V mass spectrum reduces the V requirement for precise isotope data to as little as 200-300 ng V per analysis — a reduction of ~90% compared with previous methods — making several low-V matrices amenable to V isotope analysis.This study was funded by a WHOI IR&D grant to SGN and NSF OCE grant 1434785 to JDO and SGN and Agouron Geobiology Fellowships to JDO and TJH.2016-11-1

    Isotopic evidence for the formation of the moon in a canonical giant impact

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nielsen, S. G., Bekaert, D. V., & Auro, M. Isotopic evidence for the formation of the moon in a canonical giant impact. Nature Communications, 12(1), (2021): 1817, https://doi.org/10.1038/s41467-021-22155-7.Isotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. We thank NASA-JSC, Tony Irving, and Thorsten Kleine for access to meteorite and Apollo mission samples. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program, which has been funded by NSF and NASA, and characterized and curated by the Astromaterials Curation Office at NASA Johnson Space Center and the Department of Mineral Sciences of the Smithsonian Institution. J. Blusztajn is thanked for help with mass spectrometry support at WHOI

    Thallium as a tracer of fluid–rock interaction in the shallow Mariana forearc

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 430 (2015): 416-426, doi:10.1016/j.epsl.2015.09.001.Fluids driven off the subducting Pacific plate infiltrate the shallow Mariana 26 forearc and lead to extensive serpentinization of mantle peridotite. However, the sources, pathways, and chemical modifications of ascending, slab-derived fluids remain poorly constrained and controversial. In this study, we use thallium (Tl) concentrations and isotopic ratios of serpentinized peridotite and rodingitized diabase from the South Chamorro and Conical Seamounts to discriminate between potential fluid sources with distinct Tl isotope compositions. Serpentinite samples from the Mariana forearc all display Δ205Tl > - 0.5 (where Δ205Tl = 10,000 x (205Tl/203Tlsample-205Tl/203TlSRM 997)/(205Tl/203TlSRM 997)), which is significantly enriched in 205Tl compared to the normal mantle (Δ205Tl = -2). Given that high temperature hydrothermal processes do not impart significant Tl isotope fractionation, the isotope compositions of the serpentinites must reflect that of the serpentinizing fluid. Pelagic sediments are the only known slab component that consistently display Δ205Tl > -0.5 and, therefore, we interpret the heavy Tl isotope signatures as signifying that the serpentinizing fluids were derived from subducting pelagic sediments. A rodingitized diabase from Conical Seamount was found to have an Δ205Tl of 0.8, suggesting that sediment-sourced serpentinization fluids could also affect diabase and other mafic lithologies in the shallow Mariana forearc. Forearc rodingitization of diabase led to a strong depletion in Tl content and a virtually complete loss of K, Na and Rb. The chemical composition of hybrid fluids resulting from serpentinization of harzburgite with concomitant rodingitization of diabase can be highly alkaline, depleted in Si, yet enriched in Ca, Na, K, and Rb, which is consistent with the composition of fluids emanating from mud volcanoes in the Mariana forearc. Our study suggests that fluid-rock interactions between sedimentary, mafic, and ultramafic lithologies are strongly interconnected even in the shallowest parts of subduction zones. We conclude that transfer of fluids and dissolved elements at temperatures and pressures below 400°C and 1GPa, respectively, must be taken into account when elemental budgets and mass transfer between the subducting plate, the forearc, the deep mantle and the ocean are evaluated.This study was funded by NSF grants EAR-1119373 and -1427310 to SGN, NSF grant OCE-1059534 to FK and a grant from the WHOI Deep Ocean Exploration Institute to FK and SGN

    The vanadium isotope composition of Mars: Implications for planetary differentiation in the early solar system

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nielsen, S. G., Bekaert, D., V., Magna, T., Mezger, K., & Auro, M. The vanadium isotope composition of Mars: Implications for planetary differentiation in the early solar system. Geochemical Perspectives Letters, 15, (2020): 35-39, doi:10.7185/geochemlet.2032.The V isotope composition of martian meteorites reveals that Bulk Silicate Mars (BSM) is characterised by ÎŽ51V = −1.026 ± 0.029 ‰ (2 s.e.) and is thus ∌0.06 ‰ heavier than chondrites and ∌0.17 ‰ lighter than Bulk Silicate Earth (BSE). Based on the invariant V isotope compositions of all chondrite groups, the heavier V isotope compositions of BSE and BSM relative to chondrites are unlikely to originate from mass independent isotope effects or evaporation/condensation processes in the early Solar System. These differences are best accounted for by mass dependent fractionation during core formation. Assuming that bulk Earth and Mars both have a chondritic V isotopic compostion, mass balance considerations reveal V isotope fractionation factors Δ51Vcore-mantle as substantial as −0.6 ‰ for both planets. This suggests that V isotope systematics in terrestrial and extraterrestrial rocks potentially constitutes a powerful new tracer of planetary differentiation processes accross the Solar System.This work was funded by NASA Emerging Worlds grant NNX16AD36G to SGN. Samples were acquired with funds from the Helmholtz Association through the research alliance HA 203 “Planetary Evolution and Life” to KM. TM contributed through the Strategic Research Plan of the Czech Geological Survey (DKRVO/ČGS 2018-2022). KM acknowledges support through NCCR PlanetS supported by the Swiss National Science Foundation. We thank Jurek Blusztajn for support in the WHOI Plasma Facility

    Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 213 (2017): 291-307, doi:10.1016/j.gca.2017.06.041.Thallium (Tl) isotopes are a new and potentially powerful paleoredox proxy that may track bottom water oxygen conditions based on the global burial flux of manganese oxides. Thallium has a residence time of ~20 thousand years, which is longer than the ocean mixing time, and it has been inferred that modern oxic seawater is conservative with respect to both concentration and isotopes. Marine sources of Tl have nearly identical isotopic values. Therefore, the Tl sinks, adsorption onto manganese oxides and low temperature oceanic crust alteration (the dominant seawater output), are the primary controls of the seawater isotopic composition. For relatively short-term, ~million years, redox events it is reasonable to assume that the dominant mechanism that alters the Tl isotopic composition of seawater is associated with manganese oxide burial because large variability in low temperature ocean crust alteration is controlled by long-term, multi-million years, average ocean crust production rates. This study presents new Tl isotope data for an open ocean transect in the South Atlantic, and depth transects for two euxinic basins (anoxic and free sulfide in the water column), the Cariaco Basin and Black Sea. The Tl isotopic signature of open ocean seawater in the South Atlantic was found to be homogeneous with Δ205Tl = -6.0 ± 0.3 (± 2 SD, n = 41) while oxic waters from Cariaco and the Black Sea are -5.6 and -2.2, respectively. Combined with existing data from the Pacific and Arctic Oceans, our Atlantic data establish the conservatism of Tl isotopes in the global ocean. In contrast, partially- and predominantly-restricted basins reveal Tl isotope differences that vary between open-ocean (-6) and continental material (-2) Δ205Tl, scaling with the degree of restriction. Regardless of the differences between basins, Tl is quantitatively removed from their euxinic waters below the chemocline. The burial of Tl in euxinic sediments is estimated to be an order of magnitude less than each of the modern ocean outputs and imparts no isotopic fractionation. Thallium removal into pyrite appears to be associated with a small negative fractionation between -1 and -3 Δ205Tl, which renders Tl-depleted waters below the chemocline enriched in isotopically-heavy Tl. Due to the quantitative removal of Tl from euxinic seawater, Tl isotope analyses of the authigenic fraction of underlying euxinic sediments from both the Black Sea and Cariaco Basin capture the Tl isotope value of the oxic portion of their respective water column with no net isotope fractionation. Since the Tl isotope composition of seawater is largely dictated by the relative fraction of Mn-oxide burial versus oceanic crust alteration, we contend that the Tl isotope composition of authigenic Tl in black shales, deposited under euxinic conditions but well-connected to the open ocean, can be utilized to reconstruct the Tl isotope composition of seawater, and thus to reconstruct the global history of Mn-oxide burial.JDO and SGN would like to thank NSF and NASA for funding; JDO and TJH gratefully acknowledges support from the Agouron Institute Postdoctoral Fellowship Program

    Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ostrander, C. M., Kendall, B., Gordon, G. W., Nielsen, S. G., Zheng, W., & Anbar, A. D. Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events. Frontiers in Earth Science, 10, (2022): 833609, https://doi.org/10.3389/feart.2022.833609.Evidence of molecular oxygen (O2) accumulation at Earth’s surface during the Archean (4.0–2.5 billion years ago, or Ga) seems to increase in its abundance and compelling nature toward the end of the eon, during the runup to the Great Oxidation Event. Yet, many details of this late-Archean O2 story remain under-constrained, such as the extent, tempo, and location of O2 accumulation. Here, we present a detailed Fe, Tl, and U isotope study of shales from a continuous sedimentary sequence deposited between ∌2.6 and ∌2.5 Ga and recovered from the Pilbara Craton of Western Australia (the Wittenoom and Mt. Sylvia formations preserved in drill core ABDP9). We find a progressive decrease in bulk-shale Fe isotope compositions moving up core (as low as ÎŽ56Fe = –0.78 ± 0.08‰; 2SD) accompanied by invariant authigenic Tl isotope compositions (average Δ205TlA = –2.0 ± 0.6; 2SD) and bulk-shale U isotope compositions (average ÎŽ238U = –0.30 ± 0.05‰; 2SD) that are both not appreciably different from crustal rocks or bulk silicate Earth. While there are multiple possible interpretations of the decreasing ÎŽ56Fe values, many, to include the most compelling, invoke strictly anaerobic processes. The invariant and near-crustal Δ205TlA and ÎŽ238U values point even more strongly to this interpretation, requiring reducing to only mildly oxidizing conditions over ten-million-year timescales in the late-Archean. For the atmosphere, our results permit either homogenous and low O2 partial pressures (between 10−6.3 and 10−6 present atmospheric level) or heterogeneous and spatially restricted O2 accumulation nearest the sites of O2 production. For the ocean, our results permit minimal penetration of O2 in marine sediments over large areas of the seafloor, at most sufficient for the burial of Fe oxide minerals but insufficient for the burial of Mn oxide minerals. The persistently low background O2 levels implied by our dataset between ∌2.6 and ∌2.5 Ga contrast with the timeframes immediately before and after, where strong evidence is presented for transient Archean Oxidation Events. Viewed in this broader context, our data support the emerging narrative that Earth’s initial oxygenation was a dynamic process that unfolded in fits-and-starts over many hundreds-of-millions of years.This work was supported financially by the NSF Frontiers in Earth System Dynamics program award NSF EAR-1338810 (AA), a Woods Hole Oceanographic Institution Postdoctoral Scholarship (CO), a NSERC Discovery Grant (RGPIN-435930) and the Canada Research Chair program (BK), and a NASA Exobiology award 80NSSC20K0615 (SN)

    Sources of dehydration fluids underneath the Kamchatka arc

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shu, Y., Nielsen, S. G., Le Roux, V., Wörner, G., Blusztajn, J., & Auro, M. Sources of dehydration fluids underneath the Kamchatka arc. Nature Communications, 13(1), (2022): 4467, https://doi.org/10.1038/s41467-022-32211-5.Fluids mediate the transport of subducted slab material and play a crucial role in the generation of arc magmas. However, the source of subduction-derived fluids remains debated. The Kamchatka arc is an ideal subduction zone to identify the source of fluids because the arc magmas are comparably mafic, their source appears to be essentially free of subducted sediment-derived components, and subducted Hawaii-Emperor Seamount Chain (HESC) is thought to contribute a substantial fluid flux to the Kamchatka magmas. Here we show that Tl isotope ratios are unique tracers of HESC contribution to Kamchatka arc magma sources. In conjunction with trace element ratios and literature data, we trace the progressive dehydration and melting of subducted HESC across the Kamchatka arc. In succession, serpentine (250 km depth) break down and produce fluids that contribute to arc magmatism at the Eastern Volcanic Front (EVF), Central Kamchatka Depression (CKD), and Sredinny Ridge (SR), respectively. However, given the Tl-poor nature of serpentine and lawsonite fluids, simultaneous melting of subducted HESC is required to explain the HESC-like Tl isotope signatures observed in EVF and CKD lavas. In the absence of eclogitic crust melting processes in this region of the Kamchatka arc, we propose that progressive dehydration and melting of a HESC-dominated mĂ©lange offers the most compelling interpretation of the combined isotope and trace element data.This study was financially supported by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 41903008) and Chinese Postdoctoral Science Foundation (Grant No. 2019M660153) to Y.S., NSF (Grant No. EAR-1829546) to S.G.N. and NSF (Grant No. EAR-1855302) to V.L.R
    • 

    corecore