2,138 research outputs found

    Controlling quantum systems by embedded dynamical decoupling schemes

    Full text link
    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions

    Correlated errors can lead to better performance of quantum codes

    Full text link
    A formulation for evaluating the performance of quantum error correcting codes for a general error model is presented. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. We classify correlated errors using the system-bath interaction: local versus nonlocal and two-body versus many-body interactions. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery. We also find this timing to be an important factor in the design of a coding system for achieving higher fidelities.Comment: 5 pages, 3 figures. Replaced by the published version. Title change

    Advances in decoherence control

    Full text link
    I address the current status of dynamical decoupling techniques in terms of required control resources and feasibility. Based on recent advances in both improving the theoretical design and assessing the control performance for specific noise models, I argue that significant progress may still be possible on the road of implementing decoupling under realistic constraints.Comment: 14 pages, 3 encapsulated eps figures. To appear in Journal of Modern Optics, Special Proceedings Volume of the XXXIV Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 200

    Numerical Analysis of Boosting Scheme for Scalable NMR Quantum Computation

    Full text link
    Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [L. J. Schulman and U. V. Vazirani, in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis.Comment: 14 pages, 18 figures, RevTeX4, v2,v3: typos corrected, v4: minor changes in PROGRAM 1, conforming it to the actual programs used in the simulation, v5: correction of a typographical error in the inequality sign in PROGRAM 1, v6: this version contains a new section on classical correlations, v7: correction of a wrong use of terminology, v8: Appendix A has been added, v9: published in PR

    Optimal Dynamical Decoupling Sequence for Ohmic Spectrum

    Full text link
    We investigate the optimal dynamical decoupling sequence for a qubit coupled to an ohmic environment. By analytically computing the derivatives of the decoherence function, the optimal pulse locations are found to satisfy a set of nonlinear equations which can be easily solved. These equations incorporates the environment information such as high-energy (UV) cutoff frequency \omega_c, giving a complete description of the decoupling process. The solutions explain previous experimental and theoretical results of locally optimized dynamical decoupling (LODD) sequence in high-frequency dominated environment, which were obtained by purely numerical computation and experimental feedback. As shown in numerical comparison, these solutions outperform the Uhrig dynamical decoupling (UDD) sequence by one or more orders of magnitude in the ohmic case.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Design and control of spin gates in two quantum dots arrays

    Full text link
    We study the spin-spin interaction between quantum dots coupled through a two dimensional electron gas with spin-orbit interaction. We show that the interplay between transverse electron focusing and spin-orbit coupling allows to dynamically change the symmetry of the effective spin-spin Hamiltonian. That is, the interaction can be changed from Ising-like to Heisenberg-like and vice versa. The sign and magnitude of the coupling constant can also be tuned.Comment: 4 pages, 3 figure

    Single-experiment-detectable multipartite entanglement witness for ensemble quantum computing

    Full text link
    In this paper we provide an operational method to detect multipartite entanglement in ensemble-based quantum computing. This method is based on the concept of entanglement witness. We decompose the entanglement witness for each class of multipartite entanglement into nonlocal operations in addition to local measurements. Individual single qubit measurements are performed simultaneously, hence complete detection of entanglement is performed in a single run experiment. This approach is particularly important for experiments where it is operationally difficult to prepare several copies of an unknown quantum state and in this sense the introduced scheme in this work is superior to the generally used entanglement witnesses that require a number of experiments and preparation of copies of quantum state.Comment: 9 pages, 5 figures, minor changes have been mad

    Quantum information processing using strongly-dipolar coupled nuclear spins

    Get PDF
    Dipolar coupled homonuclear spins present challenging, yet useful systems for quantum information processing. In such systems, eigenbasis of the system Hamiltonian is the appropriate computational basis and coherent control can be achieved by specially designed strongly modulating pulses. In this letter we describe the first experimental implementation of the quantum algorithm for numerical gradient estimation on the eigenbasis of a four spin system.Comment: 5 pages, 5 figures, Accepted in PR

    The WHO-5 well-being scale and its correlation to depressive and manic symptoms among outpatients with bipolar disorder or unipolar depression

    Get PDF
    INTRODUCTION: There is a lack of longitudinal studies of patients with bipolar disorder (BD) or unipolar depression (UD) in terms of psychological well-being as measured by the WHO-5 and the correlation to symptom scores. It is of interest to investigate whether the WHO-5 is useful in monitoring patients with mood disorders over time, as a tool in measurement-based care, and as a supplement to other psychometric measures. OBJECTIVES: In this study we investigate the correlation at baseline between the depressive symptom scores according to the 6-item Hamilton Depression Score (HDS-6) and the WHO-5 scores in outpatients treated for BD or UD. Furthermore, in patients with BD we investigate correlations between manic symptom scores according to the modified Bech-Rafaelsen Mania Scale (MAS-M) and the WHO-5 scores. Lastly, in patients with BD or UD, we investigate the correlations between endpoint-baseline change in WHO-5 and change in MAS-M and HDS-6. METHODS: A longitudinal study of 200 outpatients diagnosed and treated for either BD or UD. Patients will be measured at baseline and at least four weeks later. Baseline data are presented as frequencies, means and standard deviations or medians with interquartile ranges as appropriate. All correlations are presented as scatter plots and a Spearman correlation analysis RESULTS: The study is ongoing, but the results will be available for presentation at the EPA in 2021. CONCLUSIONS: The WHO-5 may represent a relevant outcome measure in the treatment of BD and UD. DISCLOSURE: No significant relationships

    Time-optimal Unitary Operations in Ising Chains II: Unequal Couplings and Fixed Fidelity

    Full text link
    We analytically determine the minimal time and the optimal control laws required for the realization, up to an assigned fidelity and with a fixed energy available, of entangling quantum gates (CNOT\mathrm{CNOT}) between indirectly coupled qubits of a trilinear Ising chain. The control is coherent and open loop, and it is represented by a local and continuous magnetic field acting on the intermediate qubit. The time cost of this local quantum operation is not restricted to be zero. When the matching with the target gate is perfect (fidelity equal to one) we provide exact solutions for the case of equal Ising coupling. For the more general case when some error is tolerated (fidelity smaller than one) we give perturbative solutions for unequal couplings. Comparison with previous numerical solutions for the minimal time to generate the same gates with the same Ising Hamiltonian but with instantaneous local controls shows that the latter are not time-optimal.Comment: 11 pages, no figure
    corecore