16 research outputs found

    Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    Get PDF
    A workshop was held in Berlin September 12-14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted of lectures to present the current state of the science of EDC action and also the risk assessment process. These lectures were followed by breakout sessions to integrate scientists from various backgrounds to discuss in an open and unbiased manner the data supporting the “low dose hypothesis”. While no consensus was reached the robust discussions were helpful to inform both basic scientists and risk assessors on all the issues. There were a number of important ideas developed to help continue the discussion and improve communication over the next few years.JRC.I.5-Systems Toxicolog

    Identification of a window of androgen sensitivity for somatic cell function in human fetal testis cultured ex vivo

    Get PDF
    BACKGROUND: Reduced androgen action during early fetal development has been suggested as the origin of reproductive disorders comprised within the testicular dysgenesis syndrome (TDS). This hypothesis has been supported by studies in rats demonstrating that normal male development and adult reproductive function depend on sufficient androgen exposure during a sensitive fetal period, called the masculinization programming window (MPW). The main aim of this study was therefore to examine the effects of manipulating androgen production during different timepoints during early human fetal testis development to identify the existence and timing of a possible window of androgen sensitivity resembling the MPW in rats. METHODS: The effects of experimentally reduced androgen exposure during different periods of human fetal testis development and function were examined using an established and validated human ex vivo tissue culture model. The androgen production was reduced by treatment with ketoconazole and validated by treatment with flutamide which blocks the androgen receptor. Testicular hormone production ex vivo was measured by liquid chromatography-tandem mass spectrometry or ELISA assays, and selected protein markers were assessed by immunohistochemistry. RESULTS: Ketoconazole reduced androgen production in testes from gestational weeks (GW) 7–21, which were subsequently divided into four age groups: GW 7–10, 10–12, 12–16 and 16–21. Additionally, reduced secretion of testicular hormones INSL3, AMH and Inhibin B was observed, but only in the age groups GW 7–10 and 10–12, while a decrease in the total density of germ cells and OCT4(+) gonocytes was found in the GW 7–10 age group. Flutamide treatment in specimens aged GW 7–12 did not alter androgen production, but the secretion of INSL3, AMH and Inhibin B was reduced, and a reduced number of pre-spermatogonia was observed. CONCLUSIONS: This study showed that reduced androgen action during early development affects the function and density of several cell types in the human fetal testis, with similar effects observed after ketoconazole and flutamide treatment. The effects were only observed within the GW 7–14 period—thereby indicating the presence of a window of androgen sensitivity in the human fetal testis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02602-y
    corecore