44 research outputs found

    MAGIICAT V. Orientation of Outflows and Accretion Determine the Kinematics and Column Densities of the Circumgalactic Medium

    Full text link
    We investigate the dependence of gas kinematics and column densities in the MgII-absorbing circumgalactic medium on galaxy color, azimuthal angle, and inclination to trace baryon cycle processes. Our sample of 30 foreground isolated galaxies at 0.3<zgal<1.00.3<z_{\rm gal}<1.0, imaged with the Hubble Space Telescope, are probed by background quasars within a projected distance of 20<D<11020<D<110 kpc. From the high-resolution (Δv6.6\Delta v\simeq 6.6 km s1^{-1}) quasar spectra, we quantify the extent of the absorber velocity structure with pixel-velocity two-point correlation functions. Absorbers with the largest velocity dispersions are associated with blue, face-on (i<57i<57^{\circ}) galaxies probed along the projected minor axis (Φ45\Phi \geq 45^{\circ}), while those with the smallest velocity dispersions belong to red, face-on galaxies along the minor axis. The velocity structure is similar for edge-on (i57i \geq 57^{\circ}) galaxies regardless of galaxy color or azimuthal angle, for red galaxies with azimuthal angle, and for blue and red galaxies probed along the projected major axis (Φ<45\Phi<45^{\circ}). The cloud column densities for face-on galaxies and red galaxies are smaller than for edge-on galaxies and blue galaxies, respectively. These results are consistent with biconical outflows along the minor axis for star-forming galaxies and accreting and/or rotating gas, which is most easily observed in edge-on galaxies probed along the major axis. Gas entrained in outflows may be fragmented with large velocity dispersions, while gas accreting onto or rotating around galaxies may be more coherent due to large path lengths and smaller velocity dispersions. Quiescent galaxies may exhibit little-to-no outflows along the minor axis, while accretion/rotation may exist along the major axis.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in Ap

    Low Mass Group Environments have no Substantial Impact on the Circumgalactic Medium Metallicity

    Get PDF
    We explore how environment affects the metallicity of the circumgalactic medium (CGM) using 13 low mass galaxy groups (2-5 galaxies) at zabs=0.25\langle z_{abs}\rangle=0.25 identified near background quasars. Using quasar spectra from HST/COS and from Keck/HIRES or VLT/UVES we measure column densities of, or determine limits on, CGM absorption lines. We use a Markov chain Monte Carlo approach with Cloudy to estimate metallicities of cool (T104T\sim10^4K) CGM gas within groups and compare them to CGM metallicities of 47 isolated galaxies. Both group and isolated CGM metallicities span a wide range (2<-2<[Si/H]<0<0), where the mean group (0.54±0.22-0.54\pm0.22) and isolated (0.77±0.14-0.77\pm0.14) CGM metallicities are similar. Group and isolated environments have similar distributions of {\HI} column densities as a function of impact parameter. However, contrary to isolated galaxies, we do not find an anti-correlation between {\HI} column density and the nearest group galaxy impact parameter. We additionally divided the groups by member luminosity ratios (i.e., galaxy-galaxy and galaxy-dwarf groups). While there was no significant difference in their mean metallicities, a modest increase in sample size should allow one to statistically identify a higher CGM metallicity in galaxy-dwarf groups compared to galaxy-galaxy groups. We conclude that either environmental effects have not played an important role in the metallicity of the CGM at this stage and expect that this may only occur when galaxies are strongly interacting or merging, or that some isolated galaxies have higher CGM metallicities due to past interactions. Thus, environment does not seem to be the cause of the CGM metallicity bimodality.Comment: 14 pages, 5 figures, 2 figure sets, 1 machine-readable tabl

    The Relationship Between Galaxy ISM and Circumgalactic Gas Metallicities

    Full text link
    We present ISM and CGM metallicities for 25 absorption systems associated with isolated star-forming galaxies (=0.28) with 9.4<log(M*/Msun)<10.9 and with absorption detected within 200kpc. Galaxy ISM metallicities were measured using Ha/[NII] emission lines from Keck/ESI spectra. CGM single-phase low-ionization metallicities were modeled using MCMC and Cloudy analysis of absorption from HST/COS and Keck/HIRES or VLT/UVES quasar spectra. We find that the star-forming galaxy ISM metallicities follow the observed stellar mass metallicity relation (scatter 0.19dex). CGM metallicity shows no dependence with stellar mass and exhibits a scatter of ~2dex. All CGM metallicities are lower than the galaxy ISM metallicities and are offset by log(dZ)=-1.17+/-0.11. There is no obvious metallicity gradient as a function of impact parameter or virial radius (<2.3 sigma). There is no relationship between the relative CGM-galaxy metallicity and azimuthal angle. We find the mean metallicity differences along the major and minor axes are -1.13+/-0.18 and -1.23+/-0.11, respectively. Regardless of whether we examine our sample by low/high inclination or low/high impact parameter, or low/high N(HI), we do not find any significant relationship with relative CGM-galaxy metallicity and azimuthal angle. We find that 10/15 low column density systems (logN(HI)<17.2) reside along the galaxy major axis while high column density systems (logN(HI)>17.2) reside along the minor axis. This suggest N(HI) could be a useful indicator of accretion/outflows. We conclude that CGM is not well mixed, given the range of galaxy-CGM metallicities, and that metallicity at low redshift might not be a good tracer of CGM processes. Furthermore we should replace integrated line-of-sight, single phase, metallicities with multi-phase, cloud-cloud metallicities, which could be more indicative of the physical processes within the CGM.Comment: 10 pages, 6 figures, 1 table. Accepted to ApJ on October 7, 201

    A Complex Multiphase DLA Associated with a Compact Group at z=2.431 Traces Accretion, Outflows, and Tidal Streams

    Full text link
    As part of our program to identify host galaxies of known z=2-3 MgII absorbers with the Keck Cosmic Web Imager (KCWI), we discovered a compact group giving rise to a z=2.431 DLA with ultra-strong MgII absorption in quasar field J234628+124859. The group consists of four star-forming galaxies within 8-28 kpc and v40340v\sim40-340 km s1^{-1} of each other, where tidal streams are weakly visible in deep HST imaging. The group geometric centre is D=25 kpc from the quasar (D=20-40 kpc for each galaxy). Galaxy G1 dominates the group (1.66L1.66L_{\ast}, SFRFUV=11.6{\rm SFR}_{\rm FUV}=11.6 M_{\odot} yr1^{-1}) while G2, G3, and G4 are less massive (0.10.3L0.1-0.3L_{\ast}, SFRFUV=1.42.0{\rm SFR}_{\rm FUV}=1.4-2.0 M_{\odot} yr1^{-1}). Using a VLT/UVES quasar spectrum covering the HI Lyman series and metal lines such as MgII, SiIII, and CIV, we characterised the kinematic structure and physical conditions along the line-of-sight with cloud-by-cloud multiphase Bayesian modelling. The absorption system has a total log(N(HI)/cm2)=20.53\log(N(HI)/{\rm cm}^{-2})=20.53 and an N(HI)N(HI)-weighted mean metallicity of log(Z/Z)=0.68\log(Z/Z_{\odot})=-0.68, with a very large MgII linewidth of Δv700\Delta v\sim700 km s1^{-1}. The highly kinematically complex profile is well-modelled with 30 clouds across low and intermediate ionisation phases with values 13log(N(HI)/cm2)20{13\lesssim\log(N(HI)/{\rm cm}^{-2})\lesssim20} and 3log(Z/Z)1-3\lesssim\log(Z/Z_{\odot})\lesssim1. Comparing these properties to the galaxy properties, we infer a wide range of gaseous environments, including metal-rich outflows, metal-poor IGM accretion, and tidal streams from galaxy--galaxy interactions. This diversity of structures forms the intragroup medium around a complex compact group environment at the epoch of peak star formation activity. Surveys of low redshift compact groups would benefit from obtaining a more complete census of this medium for characterising evolutionary pathways.Comment: 29 pages, 10 figures. Accepted for publication in MNRAS 28 June 202
    corecore