59,193 research outputs found

    Quantum states far from the energy eigenstates of any local Hamiltonian

    Full text link
    What quantum states are possible energy eigenstates of a many-body Hamiltonian? Suppose the Hamiltonian is non-trivial, i.e., not a multiple of the identity, and L-local, in the sense of containing interaction terms involving at most L bodies, for some fixed L. We construct quantum states \psi which are ``far away'' from all the eigenstates E of any non-trivial L-local Hamiltonian, in the sense that |\psi-E| is greater than some constant lower bound, independent of the form of the Hamiltonian.Comment: 4 page

    Separable states are more disordered globally than locally

    Get PDF
    A remarkable feature of quantum entanglement is that an entangled state of two parties, Alice (A) and Bob (B), may be more disordered locally than globally. That is, S(A) > S(A,B), where S(.) is the von Neumann entropy. It is known that satisfaction of this inequality implies that a state is non-separable. In this paper we prove the stronger result that for separable states the vector of eigenvalues of the density matrix of system AB is majorized by the vector of eigenvalues of the density matrix of system A alone. This gives a strong sense in which a separable state is more disordered globally than locally and a new necessary condition for separability of bipartite states in arbitrary dimensions. We also investigate the extent to which these conditions are sufficient to characterize separability, exhibiting examples that show separability cannot be characterized solely in terms of the local and global spectra of a state. We apply our conditions to give a simple proof that non-separable states exist sufficiently close to the completely mixed state of nn qudits.Comment: 4 page

    Frustration, interaction strength and ground-state entanglement in complex quantum systems

    Get PDF
    Entanglement in the ground state of a many-body quantum system may arise when the local terms in the system Hamiltonian fail to commute with the interaction terms in the Hamiltonian. We quantify this phenomenon, demonstrating an analogy between ground-state entanglement and the phenomenon of frustration in spin systems. In particular, we prove that the amount of ground-state entanglement is bounded above by a measure of the extent to which interactions frustrate the local terms in the Hamiltonian. As a corollary, we show that the amount of ground-state entanglement is bounded above by a ratio between parameters characterizing the strength of interactions in the system, and the local energy scale. Finally, we prove a qualitatively similar result for other energy eigenstates of the system.Comment: 11 pages, 3 figure

    Fault-Tolerant Quantum Computation via Exchange interactions

    Full text link
    Quantum computation can be performed by encoding logical qubits into the states of two or more physical qubits, and controlling a single effective exchange interaction and possibly a global magnetic field. This "encoded universality" paradigm offers potential simplifications in quantum computer design since it does away with the need to perform single-qubit rotations. Here we show that encoded universality schemes can be combined with quantum error correction. In particular, we show explicitly how to perform fault-tolerant leakage correction, thus overcoming the main obstacle to fault-tolerant encoded universality.Comment: 5 pages, including 1 figur

    The Dynamics of 1D Quantum Spin Systems Can Be Approximated Efficiently

    Full text link
    In this Letter we show that an arbitrarily good approximation to the propagator e^{itH} for a 1D lattice of n quantum spins with hamiltonian H may be obtained with polynomial computational resources in n and the error \epsilon, and exponential resources in |t|. Our proof makes use of the finitely correlated state/matrix product state formalism exploited by numerical renormalisation group algorithms like the density matrix renormalisation group. There are two immediate consequences of this result. The first is that the Vidal's time-dependent density matrix renormalisation group will require only polynomial resources to simulate 1D quantum spin systems for logarithmic |t|. The second consequence is that continuous-time 1D quantum circuits with logarithmic |t| can be simulated efficiently on a classical computer, despite the fact that, after discretisation, such circuits are of polynomial depth.Comment: 4 pages, 2 figures. Simplified argumen

    A holographic proof of the strong subadditivity of entanglement entropy

    Full text link
    When a quantum system is divided into subsystems, their entanglement entropies are subject to an inequality known as "strong subadditivity". For a field theory this inequality can be stated as follows: given any two regions of space AA and BB, S(A)+S(B)S(AB)+S(AB)S(A) + S(B) \ge S(A \cup B) + S(A \cap B). Recently, a method has been found for computing entanglement entropies in any field theory for which there is a holographically dual gravity theory. In this note we give a simple geometrical proof of strong subadditivity employing this holographic prescription.Comment: 9 pages, 3 figure

    Properties of Distributed Time Arc Petri Nets

    No full text
    In recent work we started a research on a distributed-timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. This formalism enables to model e.g. hardware architectures like GALS. We give a formal definition of process semantics for our model and investigate several properties of local versus global timing: expressiveness, reachability and coverability

    Quantum computation with unknown parameters

    Get PDF
    We show how it is possible to realize quantum computations on a system in which most of the parameters are practically unknown. We illustrate our results with a novel implementation of a quantum computer by means of bosonic atoms in an optical lattice. In particular we show how a universal set of gates can be carried out even if the number of atoms per site is uncertain.Comment: 3 figure

    Local unitary equivalence and entanglement of multipartite pure states

    Full text link
    The necessary and sufficient conditions for the equivalence of arbitrary n-qubit pure quantum states under Local Unitary (LU) operations derived in [B. Kraus Phys. Rev. Lett. 104, 020504 (2010)] are used to determine the different LU-equivalence classes of up to five-qubit states. Due to this classification new parameters characterizing multipartite entanglement are found and their physical interpretation is given. Moreover, the method is used to derive examples of two n-qubit states (with n>2 arbitrary) which have the properties that all the entropies of any subsystem coincide, however, the states are neither LU-equivalent nor can be mapped into each other by general local operations and classical communication
    corecore