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Entanglement in the ground state of a many-body quantum system may arise when the local terms in the
system Hamiltonian fail to commute with the interaction terms in the Hamiltonian. We quantify this phenom-
enon, demonstrating an analogy between ground-state entanglement and the phenomenon of frustration in spin
systems. In particular, we prove that the amount of ground-state entanglement is bounded above by a measure
of the extent to which interactionsfrustratethe local terms in the Hamiltonian. As a corollary, we show that the
amount of ground-state entanglement is bounded above by a ratio between parameters characterizing the
strength of interactions in the system, and the local energy scale. Finally, we prove a qualitatively similar result
for other energy eigenstates of the system.
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I. INTRODUCTION

A central problem in physics is understanding the ground-
state properties of a complex many-body Hamiltonian, espe-
cially the ground-state correlations. As an outgrowth of that
interest, there has recently been considerable work on under-
standing thenonclassicalcorrelations in the ground state,
that is, theground-state entanglement. Some recent work on
this problem, with further references, includes Refs.
[1–15,32]. This work has been motivated by the remarkable
recent progress in using entanglement as a physical resource
to accomplish feats such as quantum computation and quan-
tum teleportation.1

In this paper we connect the phenomenon of ground-state
entanglement to a well-known idea in condensed-matter
physics, that offrustration, which we now briefly review.
More detailed introductions may be found in Ref.[18]. A
typical example of a frustrated spin system is shown in Fig.
1. It consists of a triangular arrangement of three spin-1

2 par-
ticles, each pair being coupled by a classical antiferromag-
netic coupling(+Jszsz, with positive coupling strengthJ).
The antiferromagnetic coupling means that neighbors prefer
to be antialigned in order to minimize their interaction ener-
gies. However, a little thought shows that it is impossible for
all three spins to simultaneously be antialigned with each of
their neighbors. It is therefore not possible to simultaneously
minimize all three interaction energies, and the system is said
to be frustrated for this reason. The ground state of the
Hamiltonian is a compromise between the minimum-energy
states of the interaction terms.

Let us consider an analogous example in which frustration
arises not from the difficulty of choosing simultaneously
compatible spin configurations, but rather from choosing si-

multaneously compatiblebasesfor Hilbert space. For ex-
ample, consider a system of two spin-1

2 particles with Hamil-
tonianH=−gssx

1+sx
2d−sz

1sz
2, where the superscripts indicate

which spin the operators act on, andsx, sy, andsz are the
usual Pauli spin operators. The ground state of this system
arises as the result of a competitive process between mini-
mizing the contribution to the energy from the local Hamil-
tonian, −gssx

1+sx
2d, and from the interaction Hamiltonian,

−sz
1sz

2. Of course, because these two Hamiltonians do not
have common eigenvectors, the actual ground state cannot
possibly minimize both simultaneously, and must be a com-
promise between the respective ground states of the local and
interaction Hamiltonians.

This example suggests a connection between the ground-
state entanglement and a generalized concept of frustration.
If the interaction term in the Hamiltonian were turned off,
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1See, Refs.[16,17] for reviews and further references.

FIG. 1. A system containing three spin-1
2 particles, coupled by a

classical antiferromagnetic coupling(+Jszsz, with positive cou-
pling strengthJ) favoring antialignment. There is no way all the
competing coupling energies can be simultaneously minimized; for
this reason we say the system isfrustrated.
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the system would sit in an unentangled state—the ground
state of the local Hamiltonian. As the interaction term is
turned on, it causes the local Hamiltonian to become frus-
trated. As a result, the ground state sits in a basis which is a
compromise between the unentangled basis of the local
Hamiltonian, and the basis for the interaction Hamiltonian.
Provided the interaction was chosen appropriately, the result
will be an entangled ground state. Furthermore, it is clear
that the more frustrated the local Hamiltonian is by the in-
teraction, the greater the potential entanglement in the
ground state.

The main result of this paper is a bound that makes these
intuitive ideas quantitatively precise. Our paper thus illus-
trates a general idea discussed in Refs.[1,14,19–22], namely,
that quantum information science provides tools and per-
spectives for understanding the properties of complex quan-
tum systems, complementary to the existing tools of quan-
tum many-body physics.

We begin in Sec. II by reviewing some basic material on
quantitative measures of entanglement. In Sec. III we prove a
general, nonperturbative bound on the ground-state entangle-
ment, relating it to the extent to which the interaction Hamil-
tonian frustrates the local Hamiltonian. We call this the
“entanglement-frustration” bound. The proof of the bound is
conceptually and mathematically extremely simple. Its inter-
est lies in illustrating quantitatively a connection between
two apparently disparate physical phenomena, and in the
consequences which follow from this connection, to be dis-
cussed in later sections.

In Sec. IV we apply the entanglement-frustration bound to
an illustrative example. Using this example, we determine
necessary conditions for the bound to saturate the ground-
state entanglement. It is then shown by construction that it is
possible to come arbitrarily close to saturation for all pos-
sible values of the ground-state entanglement, and we con-
clude that the entanglement-frustration bound is thus the
strongest possible bound of its type.

Aside from its intuitive appeal and immediate relevance,
the entanglement-frustration bound has an elegant corollary
described in Sec. V. Intuitively, it is clear that the ground-
state entanglement of a HamiltonianH=HL+HI is small if
the size of the interactionHI is small compared with some
appropriate local energy scale associated withHL. Indeed, it
is straightforward to use perturbation theory to demonstrate a
bound along these lines, valid in the limit whenHI is a small
perturbation. The entanglement-frustration bound allows us
to prove a general nonperturbative bound quantifying this
intuition. This corollary is proved in Sec. V. Section VI gen-
eralizes these results so that they apply toarbitrary eigen-
states of the Hamiltonian, not just the ground state. This is
done using methods quite different from those used in Sec.
V, using a variant on a powerful theorem from linear algebra
known as the Davis-Kahan theorem.

The results in Secs. III–V provide a compelling picture of
how ground-state entanglement arises as the result of frustra-
tion between competing local and interaction terms in the
system Hamiltonian. Section VI generalizes some of these
results to apply to other energy eigenstates as well. The paper
concludes in Sec. VII with a discussion of some possible
extensions to this work.

II. BACKGROUND ON ENTANGLEMENT MEASURES

To make our ideas precise we must introduce a quantita-
tive measure of the amount of entanglement in the ground
state of a quantum system. A major focus of research in
quantum information science over the past few years has
been developing such a theory of entanglement,2 and several
good candidate measures exist. We shall use a measure of
entanglement introduced in Refs.[25,26]. For an n-body
quantum system in a statec this entanglement measure is
defined by3

Escd ; 1 − max
c1,. . .,cn

ukcuc1 ^ ¯ ^ cnl2. s1d

That is, Escd measures the maximal overlapc has with a
product statec1 ^ ¯ ^ cn of the n bodies making up the
system.

What makesEscd a good entanglement measure? Refer-
ences[25,26] investigated the properties ofEscd and found
that it has many properties that make it a good measure of
entanglement. These properties include the fact that:(i) Escd
can only decrease, never increase, under local operations and
classical communication, i.e., it is an entanglement mono-
tone; and(ii ) Escd is zero if and only ifc is unentangled, and
otherwise is positive. In addition, an interesting connection
has been found[27] betweenEscd and the theory of quantum
algorithms, withEscd being related to the probability of suc-
cess of an algorithm whose initial state is equivalent toc, up
to a local unitary transformation.

III. ENTANGLEMENT-FRUSTRATION BOUND

The general scenario we consider is ann-body quantum
system with HamiltonianH=HL+HI. HL is a local Hamil-
tonianconsisting of single-body orlocal terms, and therefore
has an eigenbasis of unentangled states.HI contains all the
remaining terms in the Hamiltonian, and is called theinter-
action Hamiltonian.

We let E0 be the global ground-state energy, i.e., the
ground-state energy ofH, with uE0l any corresponding
ground state. SimilarlyE0

L andE0
I are defined to be the local

and interaction ground-state energies, respectively, forHL
and HI. We define thefrustration energyof the system as
Ef ;E0−E0

L−E0
I . The frustration energy thus measures the

extent to which the global ground state fails to simulta-
neously minimize the local and interaction energies. It is
easily shown from matrix eigenvalue inequalities thatE0
ùE0

L+E0
I , so Ef is always a non-negative quantity, and is

equal to zero if and only ifHL andHI have a common ground
state.

Our aim is to relate the amount of entanglement in the
ground state,EsuE0ld, to the frustration energyEf. Of course,
to relate the dimensionless quantityEsuE0ld to Ef, which has

2See e.g., Refs.[23,24] for an introduction and further references
on the theory of entanglement.

3Note that this measure is a slightly rescaled version of that in
Refs.[25,26], but has essentially the same properties. In the present
context the rescaled definition turns out to be easier to work with.
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units of energy, we require another energy scale in the sys-
tem. The relevant energy scale turns out to be associated with
local excitations of the system. Suppose we decomposeHL
asH1+H2+¯ +Hn, whereHl is the contribution to the local
Hamiltonian from thelth subsystem. The energy scale we
will refer to is the gap between the ground and first excited
energies. The term “gap” is often used in two different
senses, in some cases it refers to the energy difference be-
tween the ground state and the first excited state with a
strictly higher energy. We will use the alternative sense
where the gapDEl is zero if Hl has a degenerate ground
state.

Now let DEl denote the gaps between the ground and first
excited energies for eachHl, and let DEent be thesecond
smallest of these energies. That is, suppose we choose
l0, l1, . . . such thatDEl0øDEl1ø¯. Then DEent=DEl1. For
the convenience of the reader we have placed brief descrip-
tions of these quantities in Table I.

Physically,DEent is the energy we need to put into a sys-
tem with HamiltonianHL in order to cause an excitation
from the ground state into an excited state of either systeml0
or systeml1. It is thus the minimal amount of energy that we
would need to put into the system in order to cause entangle-
ment in the ground state, since merely exciting one system,
while leaving the others alone, leaves the system still in a
product state.

Our result relating the ground-state entanglement to the
frustration energy andDEent is the inequality

EsuE0ld ø
Ef

DEent
. s2d

We call this theentanglement-frustrationbound. This bound
tells us that when the frustration energy is small compared
with DEent, there cannot possibly be much entanglement in
the ground state of the system. Thus it is only systems in
which the interaction and local terms substantially frus-
trate one another that it is possible to have a highly en-
tangled ground state.

The first step in the proof of the entanglement-frustration
bound, Eq.(2), is to prove that

kE0uHLuE0l − E0
L ø Ef . s3d

Physically, this is just the obvious statement that the extent
to which the local Hamiltonian is frustrated is no larger than
the total frustration in the system. The proof is simply to split
the frustration energy into a sum of contributions from the
local and interaction frustration energies:

Ef = kE0uHuE0l − E0
L − E0

I s4d

=skE0uHLuE0l − E0
Ld + skE0uHIuE0l − E0

I d. s5d

The inequality of Eq.s3d now follows from the observation
that kE0uHIuE0lùE0

I .
The second step in the proof of the entanglement-

frustration bound is to expanduE0l in terms of the eigenstates
uEj

Ll of HL, uE0l=o j a juEj
Ll. We assume that the local ener-

gies are ordered so thatE0
LøE1

Lø¯. We now split the ex-
pansion ofuE0l into terms with energies belowE0

L+DEent,
and into terms with energies at leastE0

L+DEent, that is,

uE0l = o
j=0

k

a juEj
Ll + guE'l, s6d

where sid k is the largest integer such thatEk
L,E0

L+DEent,
and thusEk+1

L =E0
L+DEent; sii d uE'l is a normalized state

containing all the terms of energy at leastE0
L+DEent, and

thus is orthogonal to the lower energy terms; andsiii d g is
the amplitude for uE'l, and thus satisfiesugu2=1
−o j=0

k ua ju2.
For later use it is important to note thato j=0

k a juEj
Ll is a

product state, as all the termsuEj
Ll involve excitations of the

same subsystem(system j0, to return to the notation used
earlier in definingDEent). Furthermore, its overlap squared
with uE0l is given byo j=0

k ua ju2.
Returning to the main line of the proof, from Eq.(6) we

have

kE0uHLuE0l = o
j=0

k

ua ju2Ej
L + ugu2kE'uHLuE'l. s7d

But Ej
LùE0

L, kE'uHLuE'lùE0
L+DEent, and ugu2=1

−o j=0
k ua ju2, so

kE0uHLuE0l ù o
j=0

k

ua ju2E0
L + S1 − o

j=0

k

ua ju2DsE0
L + DEentd.

s8d

Rearrangement of this inequality gives

kE0uHLuE0l − E0
L ù S1 − o

j=0

k

ua ju2DDEent. s9d

Combining Eqs.(3) and (9) we have

TABLE I. Quantities important in derivation of the
entanglement-frustration bound.

Quantity Description

Ej, uEjl j th energy eigenvalue and corresponding eigenvec-
tor of the total HamiltonianH

Ej
L, uEj

Ll j th energy eigenvalue and eigenvector of the local
HamiltonianHL

Ej
I, uEj

Il j th energy eigenvalue and eigenvector of the
interaction HamiltonianHI

DEl Excitation gap between the ground and first
excited energies of thelth subsystem
HamiltonianHl

DEent Minimum energy required to excite at least two
subsystems ofHL, equal to the second smallest of
the DEl above

Ef Frustration energyEf =E0−EI −EL
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S1 − o
j=0

k

ua ju2D ø
Ef

DEent
. s10d

Our desired result, Eq.s2d, will follow if we can establish
thatEsuE0ldø s1−o j=0

k ua ju2d. This follows immediately from
the definition of the entanglement measure, Eq.s1d, and the
observation we made earlier in the proof, thatuE0l and the
product stateo j=0

k a juEj
Ll have overlap squaredo j=0

k ua ju2.

IV. APPLICATION AND SATURATION OF THE
ENTANGLEMENT-FRUSTRATION BOUND

In this section we consider two separate but related issues.
First, in Sec. IV A we apply the entanglement-frustration
bound to an illustrative and physically relevant Hamiltonian,
the two-spin transverse Ising model. This example is used to
develop insight into the question of when the entanglement-
frustration bound is saturated. Building on these insights, we
analyze this question in more generality in Sec. IV B, show-
ing that the entanglement-frustration bound can be saturated
for all possible values of the ground-state entanglement.
Thus there is a sense in which the entanglement-frustration
bound is the best possible bound of its type.

A. Two-spin transverse Ising model

As an illustrative example, consider a system of two spin-
1
2 particles evolving under a transverse Ising Hamiltonian,

H = − gssx
1 + sx

2d − sz
1sz

2. s11d

In this model, the two particles are coupled magnetically
along theirz axes, and interact with an external magnetic
field of strengthg directed along thex axis. For the purposes
of this example we takegù0. Theg,0 analysis is similar,
but it simplifies the discussion to pick a definite value for the
sign of g.

Note that while the two-spin transverse Ising model is
mathematically rather trivial, it has genuine physical interest.
Furthermore, we will find that it is surprisingly informative
as a way of understanding the conditions under which the
entanglement-frustration bound is saturated. For these rea-
sons we describe the results in some detail.

Physically,g→0 is the strong-coupling limit, where we
expect the ground state to become quite entangled. We will
see in detail below that it becomes maximally entangled in
this limit, i.e.,EsuE0ld→ 1

2, for our entanglement measure. In
contrast,g→` is the weak-coupling limit, and we expect
that the ground state should be a product state in that limit,
EsuE0ld→0.

The ground-state energy of Eq.(11) is easily found to be
E0=−Î1+4g2, and the ground state is

uE0l =
1

ÎN
fs2g + Î1 + 4g2du+ +l + u− − lg, s12d

where N=1+s2g+Î1+4gd2 is a normalization constant,
and u± l;su0l± u1ld /Î2. Note that uE0l is in its Schmidt

form, with largest Schmidt coefficient4 l0=s2g
+Î1+4g2d /ÎN. The ground-state entanglement is given by
1−l0

2, which simplifies to

EsuE0ld =
1

2
−

g
Î1 + 4g2

. s13d

To calculate the entanglement-frustration bound we must
first split the Hamiltonian into a local and interaction part,
HL=−gssx

1+sx
2d, andHI =−sz

1sz
2. With these choices we find

that E0
L=−2g and E0

I =−1. The two spin systems each have
the same local energy spectrum with the gap between the
ground and excited states being 2g, so we haveDEent=2g.
This gives the entanglement-frustration bound

Ef

DEent
=

1 + 2g − Î1 + 4g2

2g
. s14d

A comparison of the quantities appearing in Eqs.(13) and
(14) is shown in Fig. 2. Both the ground-state entanglement
and the entanglement-frustration bound decrease sharply asg
increases from 0. For these small values ofg the bound is
approximately double the entanglement. Asg increases fur-
ther the ground-state entanglement decreases rapidly to 0,
while the bound decreases to 0 more slowly. The
entanglement-frustration bound is clearly not very tight in
this case, although the qualitative behavior of the bound and
the actual ground-state entanglement is similar.

We can identify two reasons for the failure to saturate the
entanglement-frustration bound in this example. First, in the
language of Sec. III, the quantitykE'uHLuE'l is strictly
larger than E0

L+DEent. We see from Eq.(12) that uE'l
= u−−l, and thuskE'uHLuE'l=E0

L+2DEent. It follows that

kE0uHLuE0l = l0
2E0

L + s1 − l0
2dsE0

L + 2DEentd s15d

and upon substitution into Eq.s5d this gives

4By contrast, ifg,0 the largest Schmidt coefficient isl0=1/ÎN.
This is the main difference between theg,0 andgù0 cases.

FIG. 2. The ground-state entanglement and entanglement-
frustration bound for the transverse Ising Hamiltonian(11) plotted
against the parameterg.
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Ef = 2DEents1 − l0
2d + kE0uHIuE0l − E0

I s16d

or

Ef

DEent
= 2EsuE0ld +

kE0uHIuE0l − E0
I

DEent
. s17d

The entanglement-frustration bound is therefore at least
twice the ground-state entanglement with this choice ofHL,
for all values ofg.

The second contribution to the excess is the term
skE0uHIuE0l−E0

I d /DEent. Physically, this is the ratio of the
frustration of the interaction energy to the local energy scale.
The excess sharply increases from 0 for smallg, and de-
creases slowly asg→`. For g greater than about 2 the
ground-state entanglement is close to 0 and the
entanglement-frustration bound is composed almost entirely
of this excess term.

B. Saturation of the entanglement-frustration bound

When, if ever, is the entanglement-frustration bound satu-
rated? We will show in this section that for all possible val-
ues ofEsuE0ld we can find a HamiltonianH whose ground
state has that amount of entanglement, and saturates the
entanglement-frustration bound as closely as desired.

Interestingly, it turns out that it is not possible toexactly
saturate the entanglement-frustration bound except in the ex-
treme casesEsuE0ld=0 andEsuE0ld=1. However, as we show
in this section, it is always possible to saturate the bound to
as good an approximation as desired.

To see that exact saturation is not possible, consider the
necessary condition for saturationkE0uHIuE0l=E0

I identified
in the previous section. This condition implies thatuE0l is a
ground state ofHI, and therefore also an eigenstate ofHL
=H−HI. Entanglement in an eigenstate of a local Hamil-
tonian is only possible if there is an associated degeneracy. If
uE0l is a ground state ofHL then we conclude thatDEent=0,
the entanglement-frustration bound is undefined, and so satu-
ration certainly does not occur. On the other hand, ifuE0l is
an excited state ofHL corresponding to some eigenvalueEj

L

then

kE0uHLuE0l − E0
L = Ej

L − E0
L. s18d

But since uE0l is entangled, by assumption, we must have
Ej

L−E0
LùDEent. Combining this with the result Ef

ù kE0uHLuE0l−E0
L givesEf /DEentù1. In contrast the maxi-

mum values ofEsuE0ld for qubits is 1
2, and more generally

for pairs of d-dimensional systems it is1−1/d. We con-
clude that it is not possible for the entanglement-
frustration bound to exactly saturate, except when
EsuE0ld=0 or 1.

The above analysis, however, says nothing foruE0l arbi-
trarily close to a ground state ofHI, and in these cases it is
possible that the bound approaches saturation.

Before dealing directly with the issue of saturation, it is
helpful to address another issue, the question of how a given
many-body HamiltonianH is to be split into local and inter-
action parts. Consider, for example, the transverse Ising

Hamiltonian H=−gssx
1+sx

2d−sz
1sz

2. In our earlier analysis
we setHL=−gssx

1+sx
2d andHI =−sz

1sz
2.

However, there is a certain arbitrariness in the splitting
into local and interaction Hamiltonians. From a mathemati-
cal point of view, there is nothing to stop us from splittingH
up as H=HL8+HI8, where HL8 is any desired local Hamil-
tonian, and we simply chooseHI8;H−HL8. So, for example,
we could chooseHL8=−gsx

1 andHI8=−gsx
2−sz

1sz
2. The reason

for this ambiguity is that while the class of local Hamilto-
nians is perfectly well defined, there is no similar definition
of what it means for a Hamiltonian to be an interaction
Hamiltonian. Failing to have such a definition, we are free to
chooseHL however we like, compensating by choosing an
appropriate interaction Hamiltonian.

This freedom to choose a splitting into local and interac-
tion parts is reflected in the fact that the entanglement-
frustration bound holds for any choice of splittingH=HL
+HI. Of course, whileEsuE0ld is not affected by the splitting
chosen, the quantitiesDEent andEf are. As a result the exact
value of the entanglement-frustration bound depends on the
particular splitting chosen. We will use this freedom in
choosing a splitting to engineer saturation in the
entanglement-frustration bound.

Physically, of course, there is often a reason to favor one
splitting into local and interaction parts over another. For
example, if we regard the transverse Ising Hamiltonian as a
model of two magnetically coupled spins placed in an exter-
nal magnetic field, then there is a clearly defined physical
sense in which −gssx

1+sx
2d ought to be regarded as the local

term in the Hamiltonian and −sz
1sz

2 as the interaction term.
However, the same model Hamiltonian may describe

many quite different physical systems, and it is not at all
clear that the splitting into local and interaction Hamiltonians
will necessarily be the same for all these physical systems.A
priori it does not seem that the mathematics of quantum
mechanics distinguishes any special subclass of interaction
Hamiltonians, and this makes it impossible to define a
unique splitting ofH into local and interaction parties on
purely mathematical grounds. More importantly, from our
point of view, the entanglement-frustration bound holds for
any splitting whatsoever, regardless of its physical(or un-
physical) origin, and it is interesting to address the question
of which splitting gives the best value for the entanglement-
frustration bound.

Let us return now to the question of saturation, and to a
closer investigation of the example of the transverse Ising
model considered in the previous section. In this example the
decomposition ofuE0l into eigenstates of the local Hamil-
tonian HL is equivalent to the Schmidt decomposition, and
the largest Schmidt coefficient is given byukE0

L uE0lu. Further-
more, the inequality

kE'uHLuE'l ù E0
L + DEent s19d

is strict becauseuE'l= u−−l is an excitation ofboth sub-
systems, whereasE0

L+DEent is the energy of asingleexcited
subsystem. The excess is therefore the energy gap of the
remaining subsystem.
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On the other hand, if we take advantage of the possibility
of different splittings ofH to chooseHL=−gsx

1 then there is
zero energy associated with an excitation of the second sub-
system and Eq.(19) becomes an equality. The interaction
Hamiltonian is determined by the choice of local Hamil-
tonian,HI =H−HL=−gsx

2−sz
1sz

2, and we calculate a second
entanglement-frustration bound

Ef

DEent
=

1

2
− SÎ1 + 4g2 − Î1 + g2

2g
D . s20d

The two bounds Eq.s14d and Eq.s20d are plotted against the
ground-state entanglement in Fig. 3. It is clear that this sec-
ond choice forHL provides a substantially tighter bound, as
we expect.

Let us generalize this example further. SupposeH is an
arbitrary bipartite Hamiltonian acting on twod-dimensional
systems, with ground state Schmidt decomposition

uE0l = lua0b0l + o
j=1

d−1

l juajbjl, s21d

where we have chosen labels so thatl is the largest Schmidt
coefficient. In order to ensure that Eq.s19d is saturated we
choose a splitting ofH with HL as follows:

HL = − gua0lka0u ^ I , s22d

whereg.0 is a parameter that will be chosen later in order
to best saturate the bound. It is clear that Eq.s21d is an
expansion ofuE0l in an energy eigenbasis ofHL, of the same
form as used in Eq.s6d, and thus that

kE'uHLuE'l = 0 =E0
L + DEent. s23d

It follows that for this choice of local Hamiltonian,

EsuE0ld =
Ef

DEent
+ skE0uHIuE0l − E0

I d/DEent, s24d

i.e., the amount by which the entanglement exceeds the
entanglement-frustration bound is composed entirely of the
second term identified earlier in Eq.s17d.

To minimize this excess we chooseg small and positive.
Observing thatHI =H−HL we may do perturbation theory in
g to show:

E0
I = E0 − kE0uHLuE0l + Osg2d s25d

=kE0uHIuE0l + Osg2d, s26d

where we usedHI =H−HL in the second line. Using this fact
and the observationDEent=g, we have

kE0uHIuE0l − E0
I

DEent
= Osgd. s27d

Taking the limit asg→0 we see that the entanglement-
frustration bound approaches the ground-state entanglement.

In summary, we have shown:
Proposition 1. Let H be an arbitrary bipartite Hamil-

tonian. Then there exists a local HamiltonianHL and corre-
sponding interaction HamiltonianHI such that the
entanglement-frustration bound derived from the splitting
H=HL+HI is arbitrarily close to the ground-state entangle-
ment ofH.

This shown that, in principle, the entanglement-frustration
bound may be arbitrarily close to saturation for all possible
values of the ground-state entanglementEsuE0ld. We there-
fore conclude that the entanglement-frustration bound cannot
be strengthened without using more detailed knowledge of
the system properties.

Our results show that saturation of the entanglement-
frustration bound is always possible with an appropriate
choice of splitting. They do not, of course, tell us what split-
ting ought to be used, except in the unusual situation where
one knows virtually everything about the ground state al-
ready, in which case one may as well calculate the ground-
state entanglement directly. Thus the content of Proposition 1
is not that we ought to expect to calculate ground-state en-
tanglement exactly, merely by choosing the appropriate split-
ting for the Hamiltonian. Rather, Proposition 1, and the
methods that lead to it, tell us that the entanglement-
frustration bound is the best possible, and provide some
physical guidance as to how to choose the splitting into local
and interaction Hamiltonians in order to achieve the best
possible values for the entanglement frustration bound.

In the case ofn-partite Hamiltonians, Proposition 1 can be
applied by taking a bipartite split between any single sub-
system and the remaining subsystems, and is possible in this
manner to gain some indication of the distribution of en-
tanglement within the ground state. This problem is dis-
cussed further in Sec. VII.

FIG. 3. Comparison of the ground-state entanglement and
entanglement-frustration bounds for two choices of splitting in the
transverse Ising model. The solid line denotes the ideal case of
saturation.
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V. GROUND-STATE ENTANGLEMENT AND THE RATIO
OF INTERACTION STRENGTH TO THE LOCAL

ENERGY SCALE

The inequality Eq.(2) has a nice corollary that is easily
proved, relating the ground-state entanglement to a ratio of
the interaction strength with the local energy scale of the
system. Suppose we defineEmax

I to be the largest eigenvalue
of HI, and letEtot

I ;Emax
I −E0

I be the total energy scale for the
interaction Hamiltonian, i.e., the difference between the larg-
est and the smallest energies. It follows that

E0 ø kE0
LuHuE0

Ll s28d

=kE0
LuHLuE0

Ll + kE0
LuHIuE0

Ll s29d

øE0
L + Emax

I . s30d

Rearranging this inequality we obtainEf øEtot
I . Combining

with Eq. s2d then gives

EsuE0ld ø
Etot

I

DEent
. s31d

The inequality Eq.(31) is an interesting result. Intuition,
experience, and perturbation theory tell us that if we start
with a local Hamiltonian and slowly turn on an interaction,
the ground-state entanglement will depend on how strong the
interaction is, compared with the local terms in the Hamil-
tonian, which tend to keep the ground state unentangled.
Equation(31) is a precise, completely general statement of
this intuition, a statement that holds even nonperturbatively.

VI. HIGHER-ENERGY EIGENSTATES AND THE RATIO
OF INTERACTION STRENGTH TO THE LOCAL

ENERGY SCALE

In Sec. V we proved a bound, Eq.(31), quantifying the
intuition that when an interaction term is switched on in a
many-body system, the ground-state entanglement will de-
pend on how strong the interaction is compared with the
strength of the local Hamiltonian. Of course, a similar intu-
ition applies also for higher-energy eigenstates. Unfortu-
nately, the strategy used to prove Eq.(31) cannot be applied
directly to energy eigenstates other than the ground and most
excited states.5 The reason is that the proof of Eq.(31) relied
on the entanglement-frustration bound, Eq.(2), and there is
no natural analog of this bound—or even a definition of frus-
tration energy—for states other than the ground and most
excited states.

In this section we prove a bound validating this intuition
for all energy eigenstates. The bound is proved in two steps.

First, supposeA=B+C, whereA andB are normal matri-
ces. We will prove a generaleigenspace perturbation theo-
rem making precise the intuition thatA and B have similar
eigenspaces whenC is sufficiently small. Our eigenspace

perturbation theorem is a variant on a celebrated theorem of
linear algebra, the Davis-Kahan theorem[28].6

A detailed discussion of how our eigenspace perturbation
theorem compares to the Davis-Kahan theorem is given be-
low. Summarizing, the major differences are that(i) our
proof is simpler,(ii ) our conclusions are more powerful, but
(iii ) our hypotheses are more specialized. For these reasons,
we believe our eigenspace perturbation theorem is of sub-
stantial independent interest in its own right.

The second step in the proof of the bound is to apply our
eigenspace perturbation theorem to understand how the en-
tanglement in an energy eigenstate depends on the relation-
ship between the strength of the local and the interaction
Hamiltonians.

Let us begin with the eigenspace perturbation theorem.
Theorem 1 (Eigenspace perturbation theorem).Let A, B,

andC be matrices such thatA=B+C, with A andB normal
matrices. Leta be an eigenvalue ofA, and supposePa is any
projector that projects onto some subspace of the corre-
sponding eigenspace.(Pa may, for example, project onto the
entire eigenspace.) Let b be some subset of the eigenvalues
of b, and letQb be a projector onto an arbitrary subspace of
the eigenspace corresponding tobPb. DefineQ;obPb Qb.
Then

uPaQu ø
uPaCQu

Da
ø

UuCuU†

Da
, s32d

whereSøT denotes a matrix inequality, i.e.,T−S is a posi-
tive matrix, uSu;ÎSS†, Da;minbPbua−bu is the distance
from a to the setb, andU is some unitary matrix.

The interpretation of these inequalities in terms of eigen-
space perturbation is perhaps not immediately clear. Rather
than describe this interpretation immediately, we defer the
description until after the proof of the theorem and a discus-
sion of how this result relates to the Davis-Kahan theorem.

Proof: We begin by proving the first inequality. Multiply-
ing A=B+C on the left byPa and on the right byQb, we
obtainaPaQb=bPaQb+PaCQb, which may be rearranged to
give

PaQb =
PaCQb

a − b
. s33d

Observe thatuPaQu2=PaQPa=obPaQbQbPa. Substituting Eq.
s33d and its adjoint gives

uPaQu2 = o
b

PaCQbC
†Pa

ua − bu2
s34d

øo
b

PaCQbC
†Pa

Da
2 , s35d

where we usedua−bu2ùDa
2. Summing outb gives

5We only proved Eq.(31) for the ground state. An analogous
result for the most excited state may be proved by applying Eq.(31)
to the Hamiltonian –H.

6For an account of the Davis-Kahan theorem, see Theorem VII.3.1
on page 211 of Ref.[29], and the surrounding discussion in Chap.
VII of that work.
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uPaQu2 ø
uPaCQu2

Da
2 . s36d

The conclusion follows by using the operator monotonicity7

of the square root function, i.e., the fact that ifSøT then
ÎSøÎT.

To prove the second inequality in the statement of the
theorem, it obviously suffices to proveuPaCQuøUuCuU†.
Note first that PaCQC†Paø PaCC†Pa. But PaCC†Pa and
C†PaC are positive operators with the same eigenvalues, so
there exists a unitaryV such that PaCC†Pa=VC†PaCV†

øVC†CV†. Putting these observations together gives
PaCQC†PaøVC†CV†, from which it follows that
PACQC†PaøUCC†U† for some unitaryU. The result now
follows by using the operator monotonicity of the square-
root function. j

The conclusion of Theorem 1 has a nice implication in
terms of matrix norms. Supposeuuu ·uuu is aunitarily invariant
matrix norm, i.e.,uuuUSVu uu= uuuSu uu for any unitariesU andV.
(Most of the familiar norms in common use in quantum in-
formation, including all thelp norms, are easily shown to be
unitarily invariant.) Using the polar decomposition we see
that S= uSuU for some unitaryU, and thus Eq.(32) implies
that

uuuPaQuuu ø
uuuPaCQuuu

Da
ø

uuuCuuu
Da

, s37d

for any unitarily invariant normuuu ·uuu.
Let us compare the eigenspace perturbation theorem,

Theorem 1, with the Davis-Kahan theorem. The Davis-
Kahan theorem is as follows:

Theorem 2 Davis-Kahan theorem.Let A, B, and C be
matrices such thatA=B+C, with A andB normal matrices.
Let a and b be subsets of the eigenvalues ofA and B, re-
spectively. LetP (respectivelyQ) project onto the space
spanned by all the eigenspaces ofA (respectivelyB) corre-
sponding to elements ofa (respectivelyb). Suppose further-
more thata andb are separated by an annulus of widthd in
the complex plane, e.g., witha inside the annulus, andb
outside the annulus. Then for any unitarily invariant norm
uuu ·uuu,

uuuPQuuu ø
uuuPCQuuu

d
ø

uuuCuuu
d

. s38d

There are three interesting differences between the Davis-
Kahan theorem and Theorem 1. First, Theorem 1 is more
specialized than Davis-Kahan, in that it applies only for a
single eigenvalue ofA, not for multiple eigenvalues. We
have tried and failed to extend our proof to the more general
case. A second difference is that Theorem 1 gives an operator
inequality that implies the corresponding inequalities for uni-
tarily invariant norms, but which is not implied by those

inequalities. Finally, our proof of Theorem 1 seems to be
substantially simpler than known proofs of the Davis-Kahan
theorem.

To better understand how Theorems 1 and 2 relate to
eigenspace perturbations, suppose thatPa projects onto a
subspacePa spanned by a single eigenstateual of A, andQ
projects onto a subspaceQ spanned by eigenstatesubl, b
Pb. The normuuuPaQu uu turns out to measure the orthogonal-
ity of these two subspaces. For example, in the special case
whenQ is a rank-1 projector,Q= ublkbu, we have

uuuPaQuuu = uuuualkaublkbuuuu = ukaubluuuuualkbuuuu s39d

which is proportional to the cosine of the angle betweenual
andubl. sNote thatuuuualkbu uuu is a constant independent ofual
and ubl, due to unitary invariance of the norm.d Thus Theo-
rems 1 and 2 tell us that this cosine is very smallsand thus
ual and ubl are close to orthogonald whenever the ratio of the
size of the perturbationuuuCu uu to the distanceDa is small. It
follows that provideduuuCu uu is sufficiently small, all the
eigenvectors ofA andB are nearly orthogonal, except for a
single nearly parallel eigenvector.

More generally, the singular values ofPaQ are the cosines
of what are known as thecanonical anglesbetween the sub-
spacesP andQ.8 If uuuPaQu uu is small then the cosines of the
canonical angles are small, and it can be shown that all vec-
tors in P are very nearly orthogonal to all vectors inQ.

Let us return now to the problem of bounding the en-
tanglement in an arbitrary eigenstateuEjl of a many-body
HamiltonianH. H is split into a local part,HL, and an inter-
action part,HI, as before. Our starting point is again the
expansion ofuEjl in terms of the eigenstatesuEk

Ll of HL.
Associated to any local Hamiltonian we can identify some
natural subspaces that contain no entanglement. These sub-
spaces are spanned by a set of eigenstatesuEm

L l related to
each other byexcitations or de-excitations of a single sub-
system. Any superposition of such states factors into a prod-
uct state, and for convenience we will refer to such a sub-
space as aproduct subspace. Our use of this term should not
be confused with the more general(and more common) use
of the term product subspace, to mean any vector subspace
containing no entanglement; our use of the term is specific to
a particularHL, and refers to those subspaces spanned by sets
of eigenstatesuEm

L l which are all related by excitations or
de-excitations of a single subsystem.

We will see later that for eachuEjl there is a natural way
to choose a corresponding product subspace from the eigen-
states ofHL. For now letK be any such product subspace
and expanduEjl in the energy eigenbasis ofHL as follows:

uEjl = o
k,uEk

LlPK
akuEk

Ll + guE'l, s40d

where uE'l is orthogonal to all states inK. It follows from
Eq. s1d that

7A review of operator monotonicity may be found in Chap. V of
Ref. [29].

8For an introduction to the canonical angles, see Chap. VII of Ref.
[29], especially the first section. We do not need to use any proper-
ties of the canonical angles in this paper.
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EsuEjld ø 1 − o
k

uaku2 = ugu2. s41d

Our strategy is to apply Theorem 1 to obtain a bound on
ugu2=1−okuaku2.

Define Pj to be the projector ontouEjl. We’re trying to
bound the amplitude squaredugu2 of the component ofuEjl
orthogonal toK, so letK' denote the subspace spanned by
all eigenstatesuEl

Ll of HL not in K and defineQK'
to be the

corresponding projector. Theorem 1 implies that

uuuPjQK'
uuu ø

uuuHIuuu
DEj ,K'

, s42d

where DEj ,K'
=minuEl

LlPK'
uEj −El

Lu. Next we must show
how uuuPjQK'

uuu is related to the entanglementEsuEjld.
It is easily seen from Eq.(40) that QK'

uEjl= uE'l and so

uuuPjQK'
uuu = uuuuEjlkEjuQK'

uuu s43d

=uguuuuuEjlkE'uuuu. s44d

As remarked earlier, the value ofuuuuvlkwuuuu for any normal-
ized vectorsuvl anduwl is a constant that depends only upon
the norm uuu ·uuu. Without loss of generality we may assume
that uuuuvlkwuuuu=1, since multiplying a unitarily invariant
norm by a constant gives another unitarily invariant norm.
We will say any norm satisfying this condition isnormal-
ized. fExamples of normalized unitarily invariant norms in-
clude the operator normiAi=supiuvli=1iAuvli and the
Hilbert-Schmidt normiAi2=ÎtrsAA†d.g

Assuming thatuuu ·uuu is normalized we see that

uuuPjQK'
uuu = ugu, s45d

and it follows from Eqs.s41d and s42d that

EsuEjld ø
uuuHIuuu2

sDEj ,K'
d2 . s46d

For any normalized, unitarily invariant normuuu ·uuu we have
iSiø uuuSuuu wherei ·i is the operator norm andSany operator
f29g. The strongest bound of this form is therefore

EsuEjld ø
iHIi2

sDEj ,K'
d2 . s47d

Different choices of the product subspaceK provide us
with a different bound in Eq.(47). Ideally we would like to
chooseK so that the quantityDEj ,K'

is as large as possible.
If Ej, or a good approximation toEj, is known then we
would ensure thatK containeduEk

Ll where uEk
L−Eju is mini-

mal. More typicallyEj is unknown, and this is not possible.
However, there is still a natural way for us to chooseK.
Importantly this choice also allows us to obtain a lower
bound forDEj ,K'

in terms of relatively simple quantities that
depend only onHL and HI, not on typically difficult-to-
calculate quantities associated with the total HamiltonianH.

Let uEj
Ll be thej th excited eigenstate of the local Hamil-

tonian. We choose the product subspaceK so that the expres-
sion

DEj ,ent= min
uEk

LlPK'

uEj
L − Ek

Lu s48d

is maximized.DEj ,ent is a generalization ofDEent in Sec.
III, in that it is the energy required to excite or de-excite at
least two subsystems from the stateuEj

Ll. Note that the
calculation ofDEj ,ent is tedious, but in principle straight-
forward provided that the energy spectrum ofHL is
known: simply enumerate the possible product subspaces
given the spectrum ofHL sa long, but finite listd, and then
calculate the minimum by inspection.

Now for eachuEk
LlPK' we have by the triangle inequal-

ity

uEk
L − Eju ù uEk

L − Ej
Lu − uEj

L − Eju s49d

ùDEj ,ent− uEj
L − Eju. s50d

Furthermore, it is straightforward to show thatuEj −Ej
Lu

ø uEmax
I u and so

DEj ,K'
= min

uEk
LlPK'

uEk
L − Eju ù DEj ,ent− uEmax

I u. s51d

Substituting into Eq.s47d we obtain a result in terms of the
spectrum ofHL and the strength ofHI alone.

Proposition 2. Let H=HL+HI with HL a local Hamil-
tonian, and supposeDEj ,ent. uEmax

I u. Then the entanglement
in the j th excited eigenstateuEjl of H, as measured using the
definition of Eq.(1), is bounded above by

EsuEjld ø
iHIi2

sDEj ,ent− uEmax
I ud2.

s52d

Noting thatuEmax
I uø iHIi this can be restated in a slightly

weaker but perhaps more elegant form, supposingDEj ,ent
ù iHIi:

EsuEjld ø
iHIi2

sDEj ,ent− iHIid2 =
1

SDEj ,ent

iHIi
− 1D2 . s53d

Equations(52) and(53) confirm and quantify our intuition
that when the nonentangled energy scale associated withuEj

Ll
is large compared to the strength of the interaction Hamil-
tonian we expect little entanglement in the excited stateuEjl
of the total Hamiltonian.

Equation(52) should be compared with the earlier result
Eq. (31) for the ground-state entanglement. We see that the
present result is equivalent to the earlier result, except for the
presence of the term −uEmax

I u in the denominator of Eq.(52),
which makes the present result weaker.

VII. CONCLUSION

We have introduced the frustration energyEf as a measure
of the degree of frustration between local and interaction
terms in the HamiltonianH=HL+HI of a many-body quan-
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tum system. This measure, when related to a local energy
scale, allowed us to derive the entanglement-frustration
bound on the ground-state entanglement in the system. An
interesting feature of this bound is that it depends only on
spectral properties of the HamiltoniansH, HL, and HI.
Ground-state entanglement properties can therefore be easily
inferred directly from the spectra alone.

The entanglement-frustration bound has, in turn, been
used to prove a bound, Eq.(31), relating the ground-state
entanglement to a ratio of the strength of the interactions and
an appropriate local energy scale. This bound involves only
the eigenvalues of the local and interaction Hamiltonians,
which are typically much easier to calculate than the eigen-
values of the full Hamiltonian, and thus this bound is more
likely to be useful in practice. A similar bound for an arbi-
trary energy eigenstate is proved in Eqs.(52) and (53).

Ultimately it would be useful to have many powerful gen-
eral techniques enabling us to infer ground-state entangle-
ment properties of a Hamiltonian by considering the inter-
play between its constituent terms. This is not always easy.
For example, consider the following system of three spin-1

2
particles:

H = gaHA + gbHB + gcHC + HAB + HBC, s54d

where A,B,C label the three particles.HA,HB,HC are local
Hamiltonians,HAB,HBC are interaction Hamiltonians on the
appropriate subsystem, andgA,gB,gC control the respective
strengths of the local Hamiltonians. The bound Eq.s31d de-
rived from the entanglement-frustration bound tells us that if
gb is relatively large then there is little entanglement between
particleB and the rest of the systemAC. From this we may
deduce that if there is any entanglement in the ground state
then it must be between particlesA andC. To some extent,
then, the entanglement-frustration bound allows us to deter-
mine the distribution of entanglement. In cases where all
three local energy scales are small compared to the interac-

tions, however, we are unable to directly deduce anything
using the techniques in this paper.

Throughout this paper we have defined frustration to oc-
cur when it is not possible to find a simultaneous ground
state for some local and interaction part of a Hamiltonian.
This is based on an analogy to the usual definition of frus-
tration, which involves competition between interactions, as
discussed in the Introduction, and illustrated in Fig. 1.(An
insightful review of classical and quantum frustration in this
sense may be found in Ref.[30].) Both these points of view
suggest interesting extensions of the investigations in the
present paper.

For example, we believe that quantum frustration suggests
interesting parallels with the phenomenon ofentanglement
sharing [31] which places restrictions on the distribution of
entanglement amongst many particles. In particular, we ex-
pect nontrivial distributions of entanglement in the ground
state of two overlapping interactions. For example, consider
a Hamiltonian acting on three spin-1

2 particles as before,

H = HAB + HBC, s55d

and suppose thatHAB and HBC have nondegenerate, maxi-
mally entangled ground states. It is impossible for entangle-
ment to be distributed in a way that would provide a ground
state forH that is a simultaneous ground state ofHAB and
HBC. The system is therefore necessarily frustrated. We
might ask what happens to the ground-state entanglement
distribution in systems such as this, and whether there are
any properties of the constituent Hamiltonians that allow us
to prove quantitative bounds relating the distribution of two-
party, GHZ-type and W-type entanglement in this system.
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