1,874 research outputs found

    The evolution of human influenza A viruses from 1999 to 2006: A complete genome study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge about the complete genome constellation of seasonal influenza A viruses from different countries is valuable for monitoring and understanding of the evolution and migration of strains. Few complete genome sequences of influenza A viruses from Europe are publicly available at the present time and there have been few longitudinal genome studies of human influenza A viruses. We have studied the evolution of circulating human H3N2, H1N1 and H1N2 influenza A viruses from 1999 to 2006, we analysed 234 Danish human influenza A viruses and characterised 24 complete genomes.</p> <p>Results</p> <p>H3N2 was the prevalent strain in Denmark during the study period, but H1N1 dominated the 2000–2001 season. H1N2 viruses were first observed in Denmark in 2002–2003. After years of little genetic change in the H1N1 viruses the 2005–2006 season presented H1N1 of greater variability than before. This indicates that H1N1 viruses are evolving and that H1N1 soon is likely to be the prevalent strain again. Generally, the influenza A haemagglutinin (HA) of H3N2 viruses formed seasonal phylogenetic clusters. Different lineages co-circulating within the same season were also observed. The evolution has been stochastic, influenced by small "jumps" in genetic distance rather than constant drift, especially with the introduction of the Fujian-like viruses in 2002–2003. Also evolutionary stasis-periods were observed which might indicate well fit viruses. The evolution of H3N2 viruses have also been influenced by gene reassortments between lineages from different seasons. None of the influenza genes were influenced by strong positive selection pressure. The antigenic site B in H3N2 HA was the preferred site for genetic change during the study period probably because the site A has been masked by glycosylations. Substitutions at CTL-epitopes in the genes coding for the neuraminidase (NA), polymerase acidic protein (PA), matrix protein 1 (M1), non-structural protein 1 (NS1) and especially the nucleoprotein (NP) were observed. The N-linked glycosylation pattern varied during the study period and the H3N2 isolates from 2004 to 2006 were highly glycosylated with ten predicted sequons in HA, the highest amount of glycosylations observed in this study period.</p> <p>Conclusion</p> <p>The present study is the first to our knowledge to characterise the evolution of complete genomes of influenza A H3N2, H1N1 and H1N2 isolates from Europe over a time period of seven years from 1999 to 2006. More precise knowledge about the circulating strains may have implications for predicting the following season strains and thereby better matching the vaccine composition.</p

    The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non-malignant tissue

    Get PDF
    Tissue samples used for 16S rRNA gene sequencing. Quantification cycles obtained using qPCR and clinical information for each clinical sample investigated using Illumina sequencing of the V4 region of the 16S rRNA gene. (XLSX 31 kb

    Human Apolipoprotein B Transgenic Mice Generated with 207- and 145-Kilobase Pair Bacterial Artificial Chromosomes. Evidence that a distant 5'-element confers appropriate transgene expression in the intestine

    Get PDF
    We reported previously that ~80-kilobase pair (kb) P1 bacteriophage clones spanning either the human or mouse apoB gene (clones p158 and p649, respectively) confer apoB expression in the liver of transgenic mice, but not in the intestine. We hypothesized that the absence of intestinal expression was due to the fact that these clones lacked a distant DNA element controlling intestinal expression. To test this possibility, transgenic mice were generated with 145- and 207-kb bacterial artificial chromosomes (BACs) that contained the human apoB gene and more extensive 5'- and 3'-flanking sequences. RNase protection, in situ hybridization, immunohistochemical, and genetic complementation studies revealed that the BAC transgenic mice manifested appropriate apoB gene expression in both the intestine and the liver, indicating that both BACs contained the distant intestinal element. To determine whether the regulatory element was located 5' or 3' to the apoB gene, transgenic mice were generated by co-microinjecting embryos with p158 and either the 5'- or 3'-sequences from the 145-kb BAC. Analysis of these mice indicated that the apoB gene's intestinal element is located 5' to the structural gene. Cumulatively, the transgenic mouse studies suggest that the intestinal element is located between -33 and -70 kb 5' to the apoB gene

    Transposable elements in cancer as a by-product of stress-induced evolvability

    Get PDF
    Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted towards certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress

    RNAi-mediated abrogation of trehalase expression does not affect trehalase activity in sugarcane

    Get PDF
    To engineer trehalose metabolism in sugarcane (Saccharum spp. hybrids) two transgenes were introduced to the genome: trehalose-6-phosphate synthase- phosphatase (TPSP), to increase trehalose biosynthesis and an RNAi transgene specific for trehalase, to abrogate trehalose catabolism. In RNAi-expressing lines trehalase expression was abrogated in many plants however no decrease in trehalase activity was observed. In TPSP lines trehalase activity was significantly higher. No events of co-integration of TPSP and RNAi transgenes were observed. We suggest trehalase activity is essential to mitigate embryonic lethal effects of trehalose metabolism and discuss the implications for engineering trehalose metabolism
    • …
    corecore