1,495 research outputs found

    Breakdown of accommodation in nerve: a possible role for persistent sodium current

    Get PDF
    BACKGROUND: Accommodation and breakdown of accommodation are important elements of information processing in nerve fibers, as they determine how nerve fibers react to natural slowly changing stimuli or electrical stimulation. The aim of the present study was to elucidate the biophysical mechanism of breakdown of accommodation, which at present is unknown. RESULTS: A model of a space-clamped motor nerve fiber was developed. It was found that this new model could reproduce breakdown of accommodation when it included a low-threshold, rapidly activating, persistent sodium current. However, the phenomenon was not reproduced when the persistent sodium current did not have fast activation kinetics or a low activation threshold. CONCLUSION: The present modeling study suggests that persistent, low-threshold, rapidly activating sodium currents have a key role in breakdown of accommodation, and that breakdown of accommodation can be used as a tool for studying persistent sodium current under normal and pathological conditions

    Global dynamics of Escherichia coli phosphoproteome in central carbon metabolism under changing culture conditions

    Get PDF
    Little is known about the role of global phosphorylation events in the control of prokaryote metabolism. By performing a detailed analysis of all protein phosphorylation events previously reported in Escherichia coli, dynamic changes in protein phosphorylation were elucidated under three different culture conditions. Using scheduled reaction monitoring, the phosphorylation ratios of 82 peptides corresponding to 71 proteins were quantified to establish whether serine (S), threonine (T) and tyrosine (Y) phosphorylation events displayed a dynamic profile under changing culture conditions. The ratio of phosphorylation for 23 enzymes from central carbon metabolism was found to be dynamic. The data presented contributes to our understanding of the global role of phosphorylation in bacterial metabolism and highlight that phosphorylation is an important, yet poorly understood, regulatory mechanism of metabolism control in bacteria

    Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules

    Full text link
    The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the internuclear axis contrasts the theoretical results.Comment: 14 pages, 4 figure

    OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Get PDF
    Background: The quantitative analysis of metabolic fluxes, i. e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on C-13 substrates, (ii) C-13 labelling analysis by mass spectrometry and (iii) mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis

    RNAi-mediated abrogation of trehalase expression does not affect trehalase activity in sugarcane

    Get PDF
    To engineer trehalose metabolism in sugarcane (Saccharum spp. hybrids) two transgenes were introduced to the genome: trehalose-6-phosphate synthase- phosphatase (TPSP), to increase trehalose biosynthesis and an RNAi transgene specific for trehalase, to abrogate trehalose catabolism. In RNAi-expressing lines trehalase expression was abrogated in many plants however no decrease in trehalase activity was observed. In TPSP lines trehalase activity was significantly higher. No events of co-integration of TPSP and RNAi transgenes were observed. We suggest trehalase activity is essential to mitigate embryonic lethal effects of trehalose metabolism and discuss the implications for engineering trehalose metabolism

    Proteome analysis of the hyaluronic acid-producing bacterium, Streptococcus zooepidemicus

    Get PDF
    Background: Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a commensal of horses and an opportunistic pathogen in many animals and humans. Some strains produce copious amounts of hyaluronic acid, making S. zooepidemicus an important industrial microorganism for the production of this valuable biopolymer used in the pharmaceutical and cosmetic industry. Encapsulation by hyaluronic acid is considered an important virulence factor in other streptococci, though the importance in S. zooepidemicus remains poorly understood. Proteomics may provide a better understanding of virulence factors in S. zooepidemicus, facilitate the design of better diagnostics and treatments, and guide engineering of superior production strains
    • …
    corecore