2,471 research outputs found

    Late Triassic – Jurassic development of the Danish Basin and the Fennoscandian Border Zone, southern Scandinavia

    Get PDF
    The continental to marine Upper Triassic – Jurassic succession of the Danish Basin and the Fennoscandian Border Zone is interpreted within a sequence stratigraphic framework, and the evolution of the depositional basin is discussed. The intracratonic Permian–Cenozoic Danish Basin was formed by Late Carboniferous – Early Permian crustal extension followed by subsidence governed primarily by thermal cooling and local faulting. The basin is separated from the stable Precambrian Baltic Shield by the Fennoscandian Border Zone, and is bounded by basement blocks of the Ringkøbing–Fyn High towards the south. In Late Triassic – Jurassic times, the basin was part of the epeiric shallow sea that covered most of northern Europe. The Upper Triassic – Jurassic basin-fill is subdivided into two tectono-stratigraphic units by a basinwide intra-Aalenian unconformity. The Norian – Lower Aalenian succession was formed under relative tectonic tranquillity and shows an overall layer-cake geometry, except for areas with local faults and salt movements. Deposition was initiated by a Norian transgression that led to shallow marine deposition and was accompanied by a gradual climatic change to more humid conditions. Extensive sheets of shoreface sand and associated paralic sediments were deposited during short-lived forced regressions in Rhaetian time. A stepwise deepening and development of fully marine conditions followed in the Hettangian – Early Sinemurian. Thick uniform basinwide mud blankets were deposited on an open storm-influenced shelf, while sand was trapped at the basin margins. This depositional pattern continued until Late Toarcian – Early Aalenian times when the basin became restricted due to renewed uplift of the Ringkøbing–Fyn High. In Middle Aalenian – Bathonian times, the former basin area was subjected to deep erosion, and deposition became restricted to the fault-bounded Sorgenfrei–Tornquist Zone. Eventually the fault margins were overstepped, and paralic–marine deposition gradually resumed in most of the basin in Late Jurassic time. Thus, the facies architecture of the Norian – Lower Aalenian succession reflects eustatic or large-scale regional sea-level changes, whereas the Middle Aalenian – Volgian succession reflects a strong tectonic control that gradually gave way to more widespread and sea-level controlled sedimentation. The uplift of the Ringkøbing–Fyn High and most of the Danish Basin occurred concurrently with the uplift of the North Sea and a wide irregular uplifted area was formed, which differs significantly from the postulated domal pattern

    Glial cells are involved in itch processing

    Get PDF

    Burial depth and post-Early Cretaceous uplift of Lower–Middle Jurassic strata in the Fennoscandian Border Zone based on organic maturity

    Get PDF
    The burial depth and the magnitude of Late Cretaceous – Early Cenozoic and Neogene–Pleistocene uplift of Lower–Middle Jurassic strata in the Fennoscandian Border Zone are estimated from measurements of huminite reflectance and comparison with a regional coalification gradient. The regional coalification curve is constructed by plotting uplift-corrected sample depths against more than 300 huminite/vitrinite reflectance values from Upper Triassic – Lower Cretaceous deposits in the Danish Basin and the Fennoscandian Border Zone. The present sample depths are corrected for Late Cretaceous inversion in the Sorgenfrei–Tornquist Zone and for Neogene–Pleistocene regional uplift. A coalification curve is erected; it cuts the abscissa at 0.2 %Ro corresponding to the reflectance of peat. This curve is considered to approximate to a reliable coalification profile over much of the study area. The Jurassic coals from the Fennoscandian Border Zone are of low rank and, based on the regional coalification curve, they have been buried to c. 625–2450 m. In the eastern part of the Rønne Graben, in the Kolobrzeg Graben and in the Arnager–Sose Fault Block, the Jurassic strata were subsequently uplifted c. 290–1400 m, corresponding to the amount of Late Cretaceous – Early Cenozoic inversion observed on seismic sections. Thus, it appears that Neogene–Pleistocene uplift did not influence the Bornholm area significantly. The data from the Höganäs Basin and Fyledal indicate a total uplift of c. 1450–2450 m, corresponding to estimates from the inversion zone in the Kattegat. The data from Anholt, on the eastern margin of the inversion zone, indicate c. 975 m of uplift

    Myelin Basic Protein-Induced Production of Tumor Necrosis Factor-α and Interleukin-6, and Presentation of the Immunodominant Peptide MBP85-99 by B Cells from Patients with Relapsing-Remitting Multiple Sclerosis

    Get PDF
    B cells are involved in driving relapsing-remitting multiple sclerosis (RRMS), as demonstrated by the positive effect of therapeutic B-cell depletion. Aside from producing antibodies, B cells are efficient antigen-presenting and cytokine-secreting cells. Diverse polyclonal stimuli have been used to study cytokine production by B cells, but here we used the physiologically relevant self-antigen myelin basic protein (MBP) to stimulate B cells from untreated patients with RRMS and healthy donors. Moreover, we took advantage of the unique ability of the monoclonal antibody MK16 to recognize the immunodominant peptide MBP85-99 presented on HLA-DR15, and used it as a probe to directly study B-cell presentation of self-antigenic peptide. The proportions of B cells producing TNF-α or IL-6 after stimulation with MBP were higher in RRMS patients than in healthy donors, indicating a pro-inflammatory profile for self-reactive patient B cells. In contrast, polyclonal stimulation with PMA + ionomycin and MBP revealed no difference in cytokine profile between B cells from RRMS patients and healthy donors. Expanded disability status scale (EDSS) as well as multiple sclerosis severity score (MSSS) correlated with reduced ability of B cells to produce IL-10 after stimulation with MBP, indicative of diminished B-cell immune regulatory function in patients with the most severe disease. Moreover, EDSS correlated positively with the frequencies of TNF-α, IL-6 and IL-10 producing B cells after polyclonal stimulation. Patient-derived, IL-10-producing B cells presented MBP85-99 poorly, as did IL-6-producing B cells, particulary in the healthy donor group. B cells from MS patients thus present antigen to T cells in a pro-inflammatory context. These findings contribute to understanding the therapeutic effects of B-cell depletion in human autoimmune diseases, including MS

    Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules

    Full text link
    The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the internuclear axis contrasts the theoretical results.Comment: 14 pages, 4 figure

    Low-power operation using self-timed circuits and adaptive scaling of the supply voltage

    Get PDF
    Recent research has demonstrated that for certain types of applications like sampled audio systems, self-timed circuits can achieve very low power consumption, because unused circuit parts automatically turn into a stand-by mode. Additional savings may be obtained by combining the self-timed circuits with a mechanism that adaptively adjusts the supply voltage to the smallest possible, while maintaining the performance requirements. This paper describes such a mechanism, analyzes the possible power savings, and presents a demonstrator chip that has been fabricated and tested. The idea of voltage scaling has been used previously in synchronous circuits, and the contributions of the present paper are: 1) the combination of supply scaling and self-timed circuitry which has some unique advantages, and 2) the thorough analysis of the power savings that are possible using this technique

    Draft genome sequence of MCPA-degrading <i>Sphingomonas </i>sp. strain ERG5, isolated from a groundwater aquifer in Denmark

    Get PDF
    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaugmented sand filters. Genes associated with MCPA degradation are situated on a putative conjugative plasmid

    Early and Middle Jurassic mires of Bornholm and the Fennoscandian Border Zone: a comparison of depositional environments and vegetation

    Get PDF
    Suitable climatic conditions for peat formation existed during Early–Middle Jurassic times in the Fennoscandian Border Zone. Autochthonous peat and allochthonous organic matter were deposited from north Jylland, south-east through the Kattegat and Øresund area, to Skåne and Bornholm. The increase in coal seam abundance and thickness from north Jylland to Bornholm indicates that the most favourable peat-forming conditions were present towards the south-east. Peat formation and deposition of organic-rich muds in the Early Jurassic coastal mires were mainly controlled by a continuous rise of relative sea level governed by subsidence and an overall eustatic rise. Watertable rise repeatedly outpaced the rate of accumulation of organic matter and terminated peat formation by lacustrine or lagoonal flooding. Organic matter accumulated in open-water mires and in continuously waterlogged, anoxic and periodically marine-influenced mires. The latter conditions resulted in huminite-rich coals containing framboidal pyrite. The investigated Lower Jurassic seams correspond to peat and peaty mud deposits that ranged from 0.5–5.7 m in thickness, but were generally less than 3 m thick. It is estimated that on Bornholm, the mires existed on average for c. 1200 years in the Hettangian–Sinemurian and for c. 2300 years in the Late Pliensbachian; the Early Jurassic (Hettangian–Sinemurian) mires in the Øresund area existed for c. 1850 years. Aalenian uplift of the Ringkøbing–Fyn High and major parts of the Danish Basin caused a significant change in the basin configuration and much reduced subsidence in the Fennoscandian Border Zone during the Middle Jurassic. This resulted in a more inland position for the Middle Jurassic mires which on occasion enabled peat accumulation to keep pace with, or temporarily outpace, watertable rise. Thus, peat formation was sometimes sustained for relatively long periods, and the mires may have existed for up to 7000 years in the Øresund area, and up to 19 000 years on Bornholm. The combination of the inland position of the mires, a seasonal climate, and on occasion a peat surface above groundwater level caused temporary oxidation of the peat surfaces and formation of inertinite-rich coals. The spore and pollen assemblages from coal seams and interbedded siliciclastic deposits indicate that the dominant plant groups in both the Early and Middle Jurassic mires were ferns and gymnosperms. However, significant floral differences are evident. In the Lower Jurassic coals, the palynology testifies to a vegetation rich in cycadophytes and coniferophytes (Taxodiaceae family) whereas club mosses were of lesser importance. Conversely, in the Middle Jurassic coals, the palynology indicates an absence of cycadophytes, a minor proportion of coniferophytes (Taxodiaceae) and a significant proportion of club mosses. These variations are probably related to adaptation by different plants to varying environmental conditions, in particular of hydrological character

    Major coastal impact induced by a 1000-year storm event

    Get PDF
    Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8 m and 5 m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event
    • …
    corecore