318 research outputs found

    Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

    Full text link
    The mean transverse momentum of produced particles, [pt], and its event-by-event fluctuations give direct access to the initial conditions of ultra-relativistic heavy-ion collisions and help probe the colliding nuclei's structure. The [pt] fluctuations can be studied via multi-particle pt correlations; so far, only the lowest four orders have been studied. Higher-order fluctuations can provide stronger constraints on the initial conditions and improved sensitivity to the detailed nuclear structure; however, their direct implementation can be challenging and is still lacking. In this paper, we apply a generic recursive algorithm for the genuine multi-particle pt correlations, which enables the accurate study of higher-order [pt] fluctuations without computationally heavy processing for the first time. With this algorithm, we will examine the power of multi-particle pt correlations through Monte Carlo model studies with different nuclear structures. The impact on the nuclear structure studies, including the nuclear deformation and triaxial structure, will be discussed. These results will demonstrate the usefulness of multi-particle pt correlations for studying nuclear structure in high-energy nuclei collisions at RHIC and the LHC, which could serve as complementary to existing low-energy nuclear structure studies.Comment: 10 pages, 6 figure

    A gold-nanoparticle stoppered [2]rotaxane

    Get PDF
    The construction of molecular machines has captured the imagination of scientists for decades. Despite significant progress in the synthesis and studies of the properties of small-molecule components (smaller than 2-5 kilo Dalton), challenges regarding the incorporation of molecular components into real devices are still eminent. Nano-sized molecular machines operate the complex biological machinery of life, and the idea of mimicking the amazing functions using artificial nano-structures is intriguing. Both in small-molecule molecular machine components and in many naturally occurring molecular machines, mechanically interlocked molecules and structures are key functional components. In this work, we describe our initial efforts to interface mechanically-interlocked molecules and gold-nanoparticles (AuNPs); the molecular wire connecting the AuNPs is covered in an insulating rotaxane-layer, thus mimicking the macroscopic design of a copper wire. Taking advantage of recent progress in the preparation of supramolecular complexes of the cucurbit[7]uril (CB[7]) macrocycle, we have prepared a bis-thiol functionalised pseudo-rotaxane that enables us to prepare a AuNP-stoppered [2]rotaxane in water. The pseudo-rotaxane is held together extremely tightly (Ka > 1013 M-1), Ka being the association constant. We have studied the solution and gas phase guest-host chemistry using NMR spectroscopy, mass spectroscopy, and electrochemistry. The bis-thiol functionalised pseudo-rotaxane holds further a ferrocene unit in the centre of the rotaxane; this ferrocene unit enables us to address the system in detail with and without CB[7] and AuNPs using electrochemical methods

    Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    Full text link
    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray Free Electron Lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work we describe a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules and we demonstrate how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. We apply this method on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL and explore the key parameters involved. We show that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, we discuss how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the Instrument Response Function.Comment: Accepted for publication in Journal of Synchrotron Radiatio

    Changes over time in characteristics, resource use and outcomes among ICU patients with COVID-19-A nationwide, observational study in Denmark

    Get PDF
    BACKGROUND: Characteristics and care of intensive care unit (ICU) patients with COVID‐19 may have changed during the pandemic, but longitudinal data assessing this are limited. We compared patients with COVID‐19 admitted to Danish ICUs in the first wave with those admitted later. METHODS: Among all Danish ICU patients with COVID‐19, we compared demographics, chronic comorbidities, use of organ support, length of stay and vital status of those admitted 10 March to 19 May 2020 (first wave) versus 20 May 2020 to 30 June 2021. We analysed risk factors for death by adjusted logistic regression analysis. RESULTS: Among all hospitalised patients with COVID‐19, a lower proportion was admitted to ICU after the first wave (13% vs. 8%). Among all 1374 ICU patients with COVID‐19, 326 were admitted during the first wave. There were no major differences in patient's characteristics or mortality between the two periods, but use of invasive mechanical ventilation (81% vs. 58% of patients), renal replacement therapy (26% vs. 13%) and ECMO (8% vs. 3%) and median length of stay in ICU (13 vs. 10 days) and in hospital (20 vs. 17 days) were all significantly lower after the first wave. Risk factors for death were higher age, larger burden of comorbidities (heart failure, pulmonary disease and kidney disease) and active cancer, but not admission during or after the first wave. CONCLUSIONS: After the first wave of COVID‐19 in Denmark, a lower proportion of hospitalised patients with COVID‐19 were admitted to ICU. Among ICU patients, use of organ support was lower and length of stay was reduced, but mortality rates remained at a relatively high level

    Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: A cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mortality in patients with persistent low CD4 count despite several years of HAART with sustained viral suppression is poorly documented. We aimed to identify predictors for inadequate CD4 cell recovery and estimate mortality in patients with low CD4 count but otherwise successful HAART.</p> <p>Method</p> <p>In a nationwide cohort of HIV patients we identified all individuals who started HAART before 1 January 2005 with CD4 cell count ≤ 200 cells/μL and experienced three years with sustained viral suppression. Patients were categorized according to CD4 cell count after the three years suppressed period (≤ 200 cells/μL; immunological non-responders (INRs), >200 cells/μL; immunological responders (IRs)). We used logistic regression and Kaplan-Meier analysis to estimated risk factors and mortality for INRs compared to IRs.</p> <p>Results</p> <p>We identified 55 INRs and 236 IRs. In adjusted analysis age > 40 years and > one year from first CD4 cell count ≤ 200 cells/μL to start of the virologically suppressed period were associated with increased risk of INR. INRs had substantially higher mortality compared to IRs. The excess mortality was mainly seen in the INR group with > one year of immunological suppression prior to viral suppression and injection drug users (IDUs).</p> <p>Conclusion</p> <p>Age and prolonged periods of immune deficiency prior to successful HAART are risk factors for incomplete CD4 cell recovery. INRs have substantially increased long-term mortality mainly associated with prolonged immunological suppression prior to viral suppression and IDU.</p
    • …
    corecore