898 research outputs found

    In search for classification and selection of spare parts suitable for additive manufacturing: a literature review

    Get PDF
    This paper reviews the literature on additive manufacturing (AM) technologies and equipment, and spare parts classification criteria to propose a systematic process for selecting spare parts which are suitable for AM. This systematic process identifies criteria that can be used to select spare parts that are suitable for AM. The review found that there is limited research that addresses identifying processes for spare parts selection for AM, even though companies have identified this to be a key challenge in adopting AM. Seven areas for future research are identified relating to the methodology of spare parts selection for AM, processes for cross-functional integration in selecting spare parts for AM, broadening the spare parts portfolio that is suitable for AM (by considering usage of AM in conjunction with conventional technologies), and potential impact of AM on product modularity and integrality

    Matrix Models

    Full text link
    Matrix models and their connections to String Theory and noncommutative geometry are discussed. Various types of matrix models are reviewed. Most of interest are IKKT and BFSS models. They are introduced as 0+0 and 1+0 dimensional reduction of Yang--Mills model respectively. They are obtained via the deformations of string/membrane worldsheet/worldvolume. Classical solutions leading to noncommutative gauge models are considered.Comment: Lectures given at the Winter School on Modern Trends in Supersymmetric Mechanics, March 2005 Frascati; 38p

    The Appearance and Disappearance of Ship Tracks on Large Spatial Scales

    Get PDF
    The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California are found south of 358N. A small rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.This work was supported in part by the Office of Naval Research and by the National Science Foundation through the Center for Clouds, Chemistry and Climate at the Scripps Institution of Oceanography, an NSF Science and Technology Center

    Non-Abelian Vortices in Supersymmetric Gauge Field Theory via Direct Methods

    Full text link
    Vortices in supersymmetric gauge field theory are important constructs in a basic conceptual phenomenon commonly referred to as the dual Meissner effect which is responsible for color confinement. Based on a direct minimization approach, we present a series of sharp existence and uniqueness theorems for the solutions of some non-Abelian vortex equations governing color-charged multiply distributed flux tubes, which provide an essential mechanism for linear confinement. Over a doubly periodic domain, existence results are obtained under explicitly stated necessary and sufficient conditions that relate the size of the domain, the vortex numbers, and the underlying physical coupling parameters of the models. Over the full plane, existence results are valid for arbitrary vortex numbers and coupling parameters. In all cases, solutions are unique.Comment: 38 pages, late

    A scheme with two large extra dimensions confronted with neutrino physics

    Full text link
    We investigate a particle physics model in a six-dimensional spacetime, where two extra dimensions form a torus. Particles with Standard Model charges are confined by interactions with a scalar field to four four-dimensional branes, two vortices accommodating ordinary type fermions and two antivortices accommodating mirror fermions. We investigate the phenomenological implications of this multibrane structure by confronting the model with neutrino physics data.Comment: LATEX, 24 pages, 9 figures, minor changes in the tex
    • …
    corecore