258,056 research outputs found
Operator-Schmidt decomposition of the quantum Fourier transform on C^N1 tensor C^N2
Operator-Schmidt decompositions of the quantum Fourier transform on C^N1
tensor C^N2 are computed for all N1, N2 > 1. The decomposition is shown to be
completely degenerate when N1 is a factor of N2 and when N1>N2. The first known
special case, N1=N2=2^n, was computed by Nielsen in his study of the
communication cost of computing the quantum Fourier transform of a collection
of qubits equally distributed between two parties. [M. A. Nielsen, PhD Thesis,
University of New Mexico (1998), Chapter 6, arXiv:quant-ph/0011036.] More
generally, the special case N1=2^n1<2^n2=N2 was computed by Nielsen et. al. in
their study of strength measures of quantum operations. [M.A. Nielsen et. al,
(accepted for publication in Phys Rev A); arXiv:quant-ph/0208077.] Given the
Schmidt decompositions presented here, it follows that in all cases the
communication cost of exact computation of the quantum Fourier transform is
maximal.Comment: 9 pages, LaTeX 2e; No changes in results. References and
acknowledgments added. Changes in presentation added to satisfy referees:
expanded introduction, inclusion of ommitted algebraic steps in the appendix,
addition of clarifying footnote
Cluster-state quantum computation
This article is a short introduction to and review of the cluster-state model
of quantum computation, in which coherent quantum information processing is
accomplished via a sequence of single-qubit measurements applied to a fixed
quantum state known as a cluster state. We also discuss a few novel properties
of the model, including a proof that the cluster state cannot occur as the
exact ground state of any naturally occurring physical system, and a proof that
measurements on any quantum state which is linearly prepared in one dimension
can be efficiently simulated on a classical computer, and thus are not
candidates for use as a substrate for quantum computation.Comment: 15 pages, resubmitted version accepted to Rev. Math. Phy
Color Ferromagnetism of Quark Matter and Quantum Hall States of Gluons in SU(3) Gauge Theory
We show a possibility that a color ferromagnetic state exists in SU(3) gauge
theory of quark matter with two flavors. Although the state involves three
types of unstable modes of gluons, all of these modes are stabilized by forming
a quantum Hall state of one of the modes. We also show that at large chemical
potential, a color superconducting state (2SC) appears even in the
ferromagnetic state. This is because Meissner effect by condensed anti-triplet
quark pairs does not work on the magnetic field in the ferromagnetic state.Comment: 11 page
-MLE: A fast algorithm for learning statistical mixture models
We describe -MLE, a fast and efficient local search algorithm for learning
finite statistical mixtures of exponential families such as Gaussian mixture
models. Mixture models are traditionally learned using the
expectation-maximization (EM) soft clustering technique that monotonically
increases the incomplete (expected complete) likelihood. Given prescribed
mixture weights, the hard clustering -MLE algorithm iteratively assigns data
to the most likely weighted component and update the component models using
Maximum Likelihood Estimators (MLEs). Using the duality between exponential
families and Bregman divergences, we prove that the local convergence of the
complete likelihood of -MLE follows directly from the convergence of a dual
additively weighted Bregman hard clustering. The inner loop of -MLE can be
implemented using any -means heuristic like the celebrated Lloyd's batched
or Hartigan's greedy swap updates. We then show how to update the mixture
weights by minimizing a cross-entropy criterion that implies to update weights
by taking the relative proportion of cluster points, and reiterate the mixture
parameter update and mixture weight update processes until convergence. Hard EM
is interpreted as a special case of -MLE when both the component update and
the weight update are performed successively in the inner loop. To initialize
-MLE, we propose -MLE++, a careful initialization of -MLE guaranteeing
probabilistically a global bound on the best possible complete likelihood.Comment: 31 pages, Extend preliminary paper presented at IEEE ICASSP 201
Screening for resistance to leaf stripe (Pyrenophora graminea) in barley
Resistance against leaf stripe (Pyrenophora graminea ) have been described in the literature, but only little is known about the resistance in modern varieties. Investigations have been started in co-operation with Danish breeders with the objective to ensure availability of healthy seed for pesticide-free and organic growing of cereals. The results so far show great variation in susceptibility to leaf stripe. Most of the tested varieties or lines were susceptible, but some varieties had a moderate level of resistance and a few were highly resistant. The test have been made with different populations collected from Denmark but only little is known about the virulence pattern in leaf stripe
- …