50 research outputs found

    MIR137 is an androgen regulated repressor of an extended network of transcriptional coregulators

    Get PDF
    Androgens and the androgen receptor (AR) play crucial roles in male development and the pathogenesis and progression of prostate cancer (PCa). The AR functions as a ligand dependent transcription factor which recruits multiple enzymatically distinct epigenetic coregulators to facilitate transcriptional regulation in response to androgens. Over-expression of AR coregulators is implicated in cancer. We have shown that over-expression of KDM1A, an AR coregulator, contributes to PCa recurrence by promoting VEGFA expression. However the mechanism(s) whereby AR coregulators are increased in PCa remain poorly understood. In this study we show that the microRNA hsa-miR-137 (miR137) tumor suppressor regulates expression of an extended network of transcriptional coregulators including KDM1A/LSD1/AOF1, KDM2A/JHDM1A/FBXL11, KDM4A/JMJD2A, KDM5B JARID1B/PLU1, KDM7A/JHDM1D/PHF8, MED1/TRAP220/DRIP205 and NCoA2/SRC2/TIF2. We show that expression of miR137 is increased by androgen in LnCaP androgen PCa responsive cells and that the miR137 locus is epigenetically silenced in androgen LnCaP:C4-2 and PC3 independent PCa cells. In addition, we found that restoration of miR137 expression down-regulates expression of VEGFA, an AR target gene, which suggests a role of miR137 loss also in cancer angiogenesis. Finally we show functional inhibition of mIR137 function enhanced androgen induction of PSA/KLK3 expression. Our data indicate that miR137 functions as an androgen regulated suppressor of androgen signaling by modulating expression of an extended network of transcriptional coregulators. Therefore, we propose that epigenetic silencing of miR137 is an important event in promoting androgen signaling during prostate carcinogenesis and progression

    Patients with type 1 diabetes and albuminuria have a reduced brain glycolytic capability that is correlated with brain atrophy

    Get PDF
    IntroductionPatients with type 1 diabetes (T1D) demonstrate brain alterations, including white matter lesions and cerebral atrophy. In this case–control study, we investigated if a reason for this atrophy could be because of diabetes-related complications affecting cerebrovascular or cerebral glycolytic functions. Cerebral physiological dysfunction can lead to energy deficiencies and, consequently, neurodegeneration.MethodsWe examined 33 patients with T1D [18 females, mean age: 50.8 years (range: 26–72)] and 19 matched healthy controls [7 females, mean age: 45.0 years (range: 24–64)]. Eleven (33%) of the patients had albuminuria. Total brain volume, brain parenchymal fraction, gray matter volume and white matter volume were measured by anatomical MRI. Cerebral vascular and glycolytic functions were investigated by measuring global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2) and cerebral lactate concentration in response to the inhalation of hypoxic air (12-14% fractional oxygen) using phase-contrast MRI and magnetic resonance spectroscopy (MRS) techniques. The inspiration of hypoxic air challenges both cerebrovascular and cerebral glycolytic physiology, and an impaired response will reveal a physiologic dysfunction.ResultsPatients with T1D and albuminuria had lower total brain volume, brain parenchymal fraction, and gray matter volume than healthy controls and patients without albuminuria. The inhalation of hypoxic air increased CBF and lactate in all groups. Patients with albuminuria had a significantly (p = 0.032) lower lactate response compared to healthy controls. The CBF response was lower in patients with albuminuria compared to healthy controls, however not significantly (p = 0.24) different. CMRO2 was unaffected by the hypoxic challenge in all groups (p > 0.16). A low lactate response was associated with brain atrophy, characterized by reduced total brain volume (p = 0.003) and reduced gray matter volume (p = 0.013).DiscussionWe observed a reduced response of the lactate concentration as an indication of impaired glycolytic activity, which correlated with brain atrophy. Inadequacies in upregulating cerebral glycolytic activity, perhaps from reduced glucose transporters in the brain or hypoxia-inducible factor 1 pathway dysfunction, could be a complication in diabetes contributing to the development of neurodegeneration and declining brain health

    Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    Full text link
    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray Free Electron Lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work we describe a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules and we demonstrate how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. We apply this method on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL and explore the key parameters involved. We show that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, we discuss how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the Instrument Response Function.Comment: Accepted for publication in Journal of Synchrotron Radiatio

    European Respiratory Society Statement on Thoracic Ultrasound

    Get PDF
    Thoracic ultrasound is increasingly considered to be an essential tool for the pulmonologist. It is used in diverse clinical scenarios, including as an adjunct to clinical decision making for diagnosis, a real-time guide to procedures, and a predictor or measurement of treatment response. The aim of this European Respiratory Society task force was to produce a statement on thoracic ultrasound for pulmonologists using thoracic ultrasound within the field of respiratory medicine. The multidisciplinary panel performed a review of the literature, addressing major areas of thoracic ultrasound practice and application. The selected major areas include equipment and technique, assessment of the chest wall, parietal pleura, pleural effusion, pneumothorax, interstitial syndrome, lung consolidation, diaphragm assessment, intervention guidance, training, and the patient perspective. Despite the growing evidence supporting the use of thoracic ultrasound, the published literature still contains a paucity of data in some important fields. Key research questions for each of the major areas were identified, which serve to facilitate future multi-centre collaborations and research to further consolidate an evidence-based use of thoracic ultrasound, for the benefit of the many patients being exposed to clinicians using thoracic ultrasound

    A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity

    Get PDF
    The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3′-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity

    Effectiveness of treatment with pegylated interferon and ribavirin in an unselected population of patients with chronic hepatitis C: A Danish nationwide cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of peginterferon and ribavirin treatment on chronic hepatitis C virus (HCV) infection has been established in several controlled clinical studies. However, the effectiveness of treatment and predictors of treatment success in routine clinical practice remains to be established. Our aim was to estimate the effectiveness of peginterferon and ribavirin treatment in unselected HCV patients handled in routine clinical practice. The endpoint was sustained virological response (SVR), determined by the absence of HCV RNA 24 weeks after the end of treatment.</p> <p>Methods</p> <p>We determined the proportion of SVR in a nationwide, population-based cohort of 432 patients with chronic HCV infection who were starting treatment, and analyzed the impact of known covariates on SVR by using a logistic regression analysis.</p> <p>Results</p> <p>The majority of treated patients had genotype 1 (133 patients) and genotype 2/3 (285 patients) infections, with 44% and 72%, respectively, obtaining SVR. Other than genotype, the predictors of SVR were age ≤ 45 years at the start of treatment, completion of unmodified treatment, the absence of cirrhosis and non-European origin.</p> <p>Conclusions</p> <p>The effectiveness of peginterferon and ribavirin treatment for chronic hepatitis C in a routine clinical practice is comparable to that observed in controlled clinical trials, with a higher SVR rate in genotype 2 and 3 patients compared to genotype 1 patients. Our data further indicate that age at start of treatment is a strong predictor of SVR irrespective of HCV genotype, with patients 45 years or younger having a higher SVR rate.</p
    corecore