485 research outputs found

    Electron tunneling time measured by photoluminescence excitation correlation spectroscopy

    Get PDF
    The tunneling time for electrons to escape from the lowest quasibound state in the quantum wells of GaAs/AlAs/GaAs/AlAs/GaAs double-barrier heterostructures with barriers between 16 and 62 Å has been measured at 80 K using photoluminescence excitation correlation spectroscopy. The decay time for samples with barrier thicknesses from 16 Å (≈12 ps) to 34 Å(≈800 ps) depends exponentially on barrier thickness, in good agreement with calculations of electron tunneling time derived from the energy width of the resonance. Electron and heavy hole carrier densities are observed to decay at the same rate, indicating a coupling between the two decay processes

    Reply to the comment by D. Kreimer and E. Mielke

    Get PDF
    We respond to the comment by Kreimer et. al. about the torsional contribution to the chiral anomaly in curved spacetimes. We discuss their claims and refute its main conclusion.Comment: 9 pages, revte

    Off-Diagonal Long-Range Order: Meissner Effect and Flux Quantization

    Full text link
    There has been a proof by Sewell that the hypothesis of off-diagonal long-range order in the reduced density matrix ρ2\rho _2 implies the Meissner effect. We present in this note an elementary and straightforward proof that not only the Meissner effect but also the property of magnetic flux quantization follows from the hypothesis. It is explicitly shown that the two phenomena are closely related, and phase coherence is the origin for both.Comment: 11 pages, Latex fil

    Topological Invariants, Instantons and Chiral Anomaly on Spaces with Torsion

    Full text link
    In a spacetime with nonvanishing torsion there can occur topologically stable configurations associated with the frame bundle which are independent of the curvature. The relevant topological invariants are integrals of local scalar densities first discussed by Nieh and Yan (N-Y). In four dimensions, the N-Y form N=(TaTaRabeaeb)N= (T^a \wedge T_a - R_{ab} \wedge e^a \wedge e^b) is the only closed 4-form invariant under local Lorentz rotations associated with the torsion of the manifold. The integral of NN over a compact D-dimensional (Euclidean) manifold is shown to be a topological invariant related to the Pontryagin classes of SO(D+1) and SO(D). An explicit example of a topologically nontrivial configuration carrying nonvanishing instanton number proportional to N\int N is costructed. The chiral anomaly in a four-dimensional spacetime with torsion is also shown to contain a contribution proportional to NN, besides the usual Pontryagin density related to the spacetime curvature. The violation of chiral symmetry can thus depend on the instanton number of the tangent frame bundle of the manifold. Similar invariants can be constructed in D>4 dimensions and the existence of the corresponding nontrivial excitations is also discussed.Comment: 6 pages, RevTeX, no figures, two column

    Optical-conductivity sum rule in cuprates and unconventional charge density waves: a short review

    Get PDF
    We begin with an overview of the experimental results for the temperature and doping dependences of the optical-conductivity spectral weight in cuprate superconductors across the whole phase diagram. Then we discuss recent attempts to explain the observed behavior of the spectral weight using reduced and full models with unconventional dx2y2d_{x^2-y^2} charge-density waves.Comment: 17 pages, RevTeX4, 4 EPS figures; Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Accommodation of lattice mismatch in Ge_(x)Si_(1−x)/Si superlattices

    Get PDF
    We present evidence that the critical thickness for the appearance of misfit defects in a given material and heteroepitaxial structure is not simply a function of lattice mismatch. We report substantial differences in the relaxation of mismatch stress in Ge_(0.5)Si_(0.5)/Si superlattices grown at different temperatures on (100) Si substrates. Samples have been analyzed by x‐ray diffraction, channeled Rutherford backscattering, and transmission electron microscopy. While a superlattice grown at 365 °C demonstrates a high degree of elastic strain, with a dislocation density <10^5 cm^(−2) , structures grown at higher temperatures show increasing numbers of structural defects, with densities reaching 2×10^(10) cm^(−2) at a growth temperature of 530 °C. Our results suggest that it is possible to freeze a lattice‐mismatched structure in a highly strained metastable state. Thus it is not surprising that experimentally observed critical thicknesses are rarely in agreement with those predicted by equilibrium theories
    corecore