374 research outputs found

    Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5

    Get PDF
    CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear indications of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order is observed on the high-field side of the transition, with a magnetic wavevector of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order remains as the magnetic field is rotated out of the basal plane, but the associated moment eventually disappears above 17 degrees, indicating that the anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure

    Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr_2GdCu_2O_8 studied by muon spin rotation (\mu SR) and DC-magnetization

    Full text link
    We have investigated the magnetic and the superconducting properties of the hybrid ruthenate-cuprate compound RuSr_{2}GdCu_{2}O_{8} by means of zero-field muon spin rotation- (ZF-μ\mu SR) and DC magnetization measurements. The DC-magnetisation data establish that this material exhibits ferromagnetic order of the Ru-moments (μ(Ru)1μB\mu (Ru) \approx 1 \mu_{B}) below T_{Curie} = 133 K and becomes superconducting at a much lower temperature T_c = 16 K. The ZF-μ\mu SR experiments indicate that the ferromagnetic phase is homogeneous on a microscopic scale and accounts for most of the sample volume. They also suggest that the magnetic order is not significantly modified at the onset of superconductivity.Comment: improved version submitted to Phys. Rev.

    Quantitative comparison of filtering methods in lattice QCD

    Full text link
    We systematically compare filtering methods used to extract topological excitations (like instantons, calorons, monopoles and vortices) from lattice gauge configurations, namely APE-smearing and spectral decompositions based on lattice Dirac and Laplace operators. Each of these techniques introduces ambiguities, which can invalidate the interpretation of the results. We show, however, that all these methods, when handled with care, reveal very similar topological structures. Hence, these common structures are free of ambiguities and faithfully represent infrared degrees of freedom in the QCD vacuum. As an application we discuss an interesting power-law for the clusters of filtered topological charge.Comment: 6 pages, 18 plots in 5 figures; final version as published in EPJ A; section 4 was adde

    Gauged O(n) spin models in one dimension

    Get PDF
    We consider a gauged O(n) spin model, n >= 2, in one dimension which contains both the pure O(n) and RP(n-1) models and which interpolates between them. We show that this model is equivalent to the non-interacting sum of the O(n) and Ising models. We derive the mass spectrum that scales in the continuum limit, and demonstrate that there are two universality classes, one of which contains the O(n) and RP(n-1) models and the other which has a tuneable parameter but which is degenerate in the sense that it arises from the direct sum of the O(n) and Ising models.Comment: 9 pages, no figures, LaTeX sourc

    Staging superstructures in high-TcT_c Sr/O co-doped La2x_{2-x}Srx_xCuO4+y_{4+y}

    Get PDF
    We present high energy X-ray diffraction studies on the structural phases of an optimal high-TcT_c superconductor La2x_{2-x}Srx_xCuO4+y_{4+y} tailored by co-hole-doping. This is specifically done by varying the content of two very different chemical species, Sr and O, respectively, in order to study the influence of each. A superstructure known as staging is observed in all samples, with the staging number nn increasing for higher Sr dopings xx. We find that the staging phases emerge abruptly with temperature, and can be described as a second order phase transition with transition temperatures slightly depending on the Sr doping. The Sr appears to correlate the interstitial oxygen in a way that stabilises the reproducibility of the staging phase both in terms of staging period and volume fraction in a specific sample. The structural details as investigated in this letter appear to have no direct bearing on the electronic phase separation previously observed in the same samples. This provides new evidence that the electronic phase separation is determined by the overall hole concentration rather than specific Sr/O content and concommittant structural details.Comment: 8 pages, incl. 4 figure

    Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system

    Full text link
    We have studied the magnetic characteristics of a series of super-oxygenated La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously phase separate into an oxygen rich superconducting phase with a TC near 40 K and an oxygen poor magnetic phase that also orders near 40 K. All samples studied are highly magnetically reversible even to low temperatures. Although the internal magnetic regions of these samples might be expected to act as pinning sites, our present study shows that they do not favor flux pinning. Flux pinning requires a matching condition between the defect and the superconducting coherence length. Thus, our results imply that the magnetic regions are too large to act as pinning centers. This also implies that the much greater flux pinning in typical La2-xSrxCuO4 materials is the result of nanoscale inhomogeneities that grow to become the large magnetic regions in the super-oxygenated materials. The superconducting regions of the phase separated materials are in that sense cleaner and more homogenous than in the typical cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR

    The Alternative for Germany’s radicalization in historical-comparative perspective

    Get PDF
    This article chronicles the AfD’s rightward repositioning and compares it with the programmatic development of three postwar German parties on the ideological wings. By highlighting factors that tilt the balance of power away from moderate reformers towards hardliners, this comparative analysis sheds light on the conditions that lead a relatively successful party on the ideological wings, such as the AfD, to radicalize its programme. Four variables stand out: whether party hardliners take the blame for the recent election loss; whether they offer a convincing programmatic and strategic alternative to the reformers; whether changes in party composition strengthen hardliners; and whether external factors enhance their weight within the party. The essay concludes that the AfD’s radicalization was unusual, but not exceptional. It is however too early to conclude that the Federal Republic’s distinctive institutions and political culture no longer impose significant costs on parties that shift their programmes away from the centre

    Antiferromagnetic domain walls in lightly doped layered cuprates

    Full text link
    Recent ESR data shows rotation of the antiferromagnetic (AF) easy axis in lightly doped layered cuprates upon lowering the temperature. We account for the ESR data and show that it has significant implications on spin and charge ordering according to the following scenario: In the high temperature phase AF domain walls coincide with (110) twin boundaries of an orthorhombic phase. A magnetic field leads to annihilation of neighboring domain walls resulting in antiphase boundaries. The latter are spin carriers, form ferromagnetic lines and may become charged in the doped system. However, hole ordering at low temperatures favors the (100) orientation, inducing a pi/4 rotation in the AF easy axis. The latter phase has twin boundaries and AF domain walls in (100) planes.Comment: 4 pages, 3 figures (1 eps). v2: no change in content, Tex shadow problem cleare

    Superconductivity in La(1.56)Sr(0.44)CuO(4)/La(2)CuO(4) superlattices

    Get PDF
    Superlattices of the repeated structure La(1.56)Sr(0.44)CuO(4)/La(2)CuO(4) (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T_c \simeq 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy muSR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.Comment: 4 pages, 3 figure

    Questionable Arguments for the Correctness of Perturbation Theory in Non-Abelian Models

    Full text link
    We analyze the arguments put forward recently by Niedermayer et al in favor of the correctness of conventional perturbation theory in non-Abelian models and supposedly showing that our super-instanton counterexample was sick. We point out that within their own set of assumptions, the proof of Niedermayer et al regarding the correctness of perturbation theory is incorrect and provide a correct proof under more restrictive assumptions. We reply also to their claim that the S-matrix bootstrap approach of Balog et al supports the existence of asymptotic freedom in the O(3) model.Comment: 9 page
    corecore