394 research outputs found

    Quantum statistics of interacting dimer spin systems

    Get PDF
    The compound TlCuCl3 represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Wurtz [Phys. Rev. B 50, 13 515 (1994)] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important

    Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5

    Get PDF
    CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear indications of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order is observed on the high-field side of the transition, with a magnetic wavevector of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order remains as the magnetic field is rotated out of the basal plane, but the associated moment eventually disappears above 17 degrees, indicating that the anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure

    Fractal Behaviour in the O(3) Model

    Get PDF
    We study domain formation in the two-dimensional O(3) model near criticality. The fractal dimension of these domains is determined with good statistical accuracy.Comment: 6 pages + 3 figures (concatenated PS files, uuencoded gz-compressed

    Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1−x_{1-x}Cox_{x})2_{2}As2_{2}

    Get PDF
    We have studied the magnetic and superconducting properties of Ba(Fe0.95_{0.95}Co0.05_{0.05})2_{2}As2_{2} as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments.Comment: 9 pages, 6 figure

    Quantitative comparison of filtering methods in lattice QCD

    Full text link
    We systematically compare filtering methods used to extract topological excitations (like instantons, calorons, monopoles and vortices) from lattice gauge configurations, namely APE-smearing and spectral decompositions based on lattice Dirac and Laplace operators. Each of these techniques introduces ambiguities, which can invalidate the interpretation of the results. We show, however, that all these methods, when handled with care, reveal very similar topological structures. Hence, these common structures are free of ambiguities and faithfully represent infrared degrees of freedom in the QCD vacuum. As an application we discuss an interesting power-law for the clusters of filtered topological charge.Comment: 6 pages, 18 plots in 5 figures; final version as published in EPJ A; section 4 was adde

    Bose-Einstein Condensation of S = 1 Ni spin degrees of freedom in NiCl2-4SC(NH2)2

    Full text link
    It has recently been suggested that the organic compound NiCl2_2-4SC(NH2_2)2_2 (DTN) exhibits Bose-Einstein Condensation (BEC) of the Ni spin degrees of freedom for fields applied along the tetragonal c-axis. The Ni spins exhibit 3D XY-type antiferromagnetic order above a field-induced quantum critical point at Hc1∌2H_{c1} \sim 2 T. The Ni spin fluid can be characterized as a system of effective bosons with a hard-core repulsive interaction in which the antiferromagnetic state corresponds to a Bose-Einstein condensate (BEC) of the phase coherent S=1S = 1 Ni spin system. We have investigated the the high-field phase diagram and the occurrence of BEC in DTN by means of specific heat and magnetocaloric effect measurements to dilution refrigerator temperatures. Our results indicate that a key prediction of BEC is satisfied; the magnetic field-temperature quantum phase transition line Hc(T)−Hc1∝TαH_c(T)-H_{c1} \propto T^\alpha approaches a power-law at low temperatures, with an exponent α=1.47±0.06\alpha = 1.47 \pm 0.06 at the quantum critical point, consistent with the BEC theory prediction of α=1.5\alpha = 1.5.Comment: 4 pages, 4 figure

    A Prismatic Analyser concept for Neutron Spectrometers

    Get PDF
    A development in modern neutron spectroscopy is to avoid the need of large samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can be combined with advanced focusing geometries and with multiplexing instrument designs. We present a combination of simulations and data with 3 energies from one analyser. The data was taken on a prototype installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2 times finer resolution and a factor 1.9 in flux gain compared to a Rowland geometry or 3 times finer resolution and a factor 3.2 in flux gain compared to a single flat analyser slab
    • 

    corecore