200 research outputs found

    NK Cells Promote Th-17 Mediated Corneal Barrier Disruption in Dry Eye

    Get PDF
    The conjunctiva contains a specialized population of lymphocytes that reside in the epithelium, named intraepithelial lymphocytes (IEL).Here we characterized the IEL population prior to and after experimental desiccating stress (DS) for 5 or 10 days (DS5, DS10) and evaluated the effect of NK depletion on DS. The frequency of IELs in normal murine conjunctiva was CD3(+)CD103(+) (~22%), CD3(+)γδ(+) (~9.6%), CD3(+)NK(+) (2%), CD3(-)NK(+) (~4.4%), CD3(+)CD8α (~0.9%), and CD4 (~0.6%). Systemic depletion of NK cells prior and during DS led to a decrease in the frequency of total and activated DCs, a decrease in T helper-17(+) cells in the cervical lymph nodes and generation of less pathogenic CD4(+)T cells. B6.nude recipient mice of adoptively transferred CD4(+)T cells isolated from NK-depleted DS5 donor mice showed significantly less corneal barrier disruption, lower levels of IL-17A, CCL20 and MMP-3 in the cornea epithelia compared to recipients of control CD4(+)T cells.Taken together, these results show that the NK IELs are involved in the acute immune response to desiccation-induced dry eye by activating DC, which in turn coordinate generation of the pathogenic Th-17 response

    Disruption of TGF-β Signaling Improves Ocular Surface Epithelial Disease in Experimental Autoimmune Keratoconjunctivitis Sicca

    Get PDF
    TGF-β is a pleiotropic cytokine that can have pro- or anti-inflammatory effects depending on the context. Elevated levels of bioactive TGF-β1 in tears and elevated TGF-β1mRNA transcripts in conjunctiva and minor salivary glands of human Sjögren's Syndrome patients has also been reported. The purpose of this study was to evaluate the response to desiccating stress (DS), an experimental model of dry eye, in dominant-negative TGF-β type II receptor (CD4-DNTGFβRII) mice. These mice have a truncated TGF-β receptor in CD4(+) T cells, rendering them unresponsive to TGF-β.DS was induced by subcutaneous injection of scopolamine and exposure to a drafty low humidity environment in CD4-DNTGFβRII and wild-type (WT) mice, aged 14 weeks, for 5 days. Nonstressed (NS) mice served as controls. Parameters of ocular surface disease included corneal smoothness, corneal barrier function and conjunctival goblet cell density. NS CD4-DNTGFβRII at 14 weeks of age mice exhibited a spontaneous dry eye phenotype; however, DS improved their corneal barrier function and corneal surface irregularity, increased their number of PAS+ GC, and lowered CD4(+) T cell infiltration in conjunctiva. In contrast to WT, CD4-DNTGFβRII mice did not generate a Th-17 and Th-1 response, and they failed to upregulate MMP-9, IL-23, IL-17A, RORγT, IFN-γ and T-bet mRNA transcripts in conjunctiva. RAG1KO recipients of adoptively transferred CD4+T cells isolated from DS5 CD4-DNTGFβRII showed milder dry eye phenotype and less conjunctival inflammation than recipients of WT control.Our results showed that disruption of TGF-β signaling in CD4(+) T cells causes paradoxical improvement of dry eye disease in mice subjected to desiccating stress

    Pathway-Based Evaluation in Early Onset Colorectal Cancer Suggests Focal Adhesion and Immunosuppression along with Epithelial-Mesenchymal Transition

    Get PDF
    Colorectal cancer (CRC) has one of the highest incidences among all cancers. The majority of CRCs are sporadic cancers that occur in individuals without family histories of CRC or inherited mutations. Unfortunately, whole-genome expression studies of sporadic CRCs are limited. A recent study used microarray techniques to identify a predictor gene set indicative of susceptibility to early-onset CRC. However, the molecular mechanisms of the predictor gene set were not fully investigated in the previous study. To understand the functional roles of the predictor gene set, in the present study we applied a subpathway-based statistical model to the microarray data from the previous study and identified mechanisms that are reasonably associated with the predictor gene set. Interestingly, significant subpathways belonging to 2 KEGG pathways (focal adhesion; natural killer cell-mediated cytotoxicity) were found to be involved in the early-onset CRC patients. We also showed that the 2 pathways were functionally involved in the predictor gene set using a text-mining technique. Entry of a single member of the predictor gene set triggered a focal adhesion pathway, which confers anti-apoptosis in the early-onset CRC patients. Furthermore, intensive inspection of the predictor gene set in terms of the 2 pathways suggested that some entries of the predictor gene set were implicated in immunosuppression along with epithelial-mesenchymal transition (EMT) in the early-onset CRC patients. In addition, we compared our subpathway-based statistical model with a gene set-based statistical model, MIT Gene Set Enrichment Analysis (GSEA). Our method showed better performance than GSEA in the sense that our method was more consistent with a well-known cancer-related pathway set. Thus, the biological suggestion generated by our subpathway-based approach seems quite reasonable and warrants a further experimental study on early-onset CRC in terms of dedifferentiation or differentiation, which is underscored in EMT and immunosuppression

    Research on the Stability of a Rabbit Dry Eye Model Induced by Topical Application of the Preservative Benzalkonium Chloride

    Get PDF
    Dry eye is a common disease worldwide, and animal models are critical for the study of it. At present, there is no research about the stability of the extant animal models, which may have negative implications for previous dry eye studies. In this study, we observed the stability of a rabbit dry eye model induced by the topical benzalkonium chloride (BAC) and determined the valid time of this model.). Decreased levels of mucin-5 subtype AC (MUC5AC), along with histopathological and ultrastructural disorders of the cornea and conjunctiva could be observed in Group BAC-W4 and particularly in Group BAC-W5 until day 21.A stable rabbit dry eye model was induced by topical 0.1% BAC for 5 weeks, and after BAC removal, the signs of dry eye were sustained for 2 weeks (for the mixed type of dry eye) or for at least 3 weeks (for mucin-deficient dry eye)

    Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow

    Get PDF
    Non‐Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear‐thinning rheology in a Taylor‐Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear‐thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher‐order wavy instability, and is associated with an increase in the axial wavelength. Strong shear‐thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear‐thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor

    Osteoclast Activated FoxP3+ CD8+ T-Cells Suppress Bone Resorption in vitro

    Get PDF
    BACKGROUND: Osteoclasts are the body's sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (T(EFF)) increase bone resorption by osteoclasts. Prolonged exposure to the T(EFF) produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previously shown that under non-inflammatory conditions, murine osteoclasts can recruit naïve CD8 T-cells and activate these T-cells to induce CD25 and FoxP3 (Tc(REG)). The activation of CD8 T-cells by osteoclasts also induced the cytokines IL-2, IL-6, IL-10 and IFN-γ. Individually, these cytokines can activate or suppress osteoclast resorption. PRINCIPAL FINDINGS: To determine the net effect of Tc(REG) on osteoclast activity we used a number of in vitro assays. We found that Tc(REG) can potently and directly suppress bone resorption by osteoclasts. Tc(REG) could suppress osteoclast differentiation and resorption by mature osteoclasts, but did not affect their survival. Additionally, we showed that Tc(REG) suppress cytoskeletal reorganization in mature osteoclasts. Whereas induction of Tc(REG) by osteoclasts is antigen-dependent, suppression of osteoclasts by Tc(REG) does not require antigen or re-stimulation. We demonstrated that antibody blockade of IL-6, IL-10 or IFN-γ relieved suppression. The suppression did not require direct contact between the Tc(REG) and osteoclasts. SIGNIFICANCE: We have determined that osteoclast-induced Tc(REG) can suppress osteoclast activity, forming a negative feedback system. As the CD8 T-cells are activated in the absence of inflammatory signals, these observations suggest that this regulatory loop may play a role in regulating skeletal homeostasis. Our results provide the first documentation of suppression of osteoclast activity by CD8 regulatory T-cells and thus, extend the purview of osteoimmunology

    MicroRNA-145 Regulates Human Corneal Epithelial Differentiation

    Get PDF
    Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium.Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary CEPCs.We found expression of miR-143/145 cluster in human corneal epithelium. Our results also showed that miR-145 regulated the corneal epithelium formation and maintenance of epithelial integrity, via ITGB8 targeting
    corecore