683 research outputs found
Metrics with Galilean Conformal Isometry
The Galilean Conformal Algebra (GCA) arises in taking the non-relativistic
limit of the symmetries of a relativistic Conformal Field Theory in any
dimensions. It is known to be infinite-dimensional in all spacetime dimensions.
In particular, the 2d GCA emerges out of a scaling limit of linear combinations
of two copies of the Virasoro algebra. In this paper, we find metrics in
dimensions greater than two which realize the finite 2d GCA (the global part of
the infinite algebra) as their isometry by systematically looking at a
construction in terms of cosets of this finite algebra. We list all possible
sub-algebras consistent with some physical considerations motivated by earlier
work in this direction and construct all possible higher dimensional
non-degenerate metrics. We briefly study the properties of the metrics
obtained. In the standard one higher dimensional "holographic" setting, we find
that the only non-degenerate metric is Minkowskian. In four and five
dimensions, we find families of non-trivial metrics with a rather exotic
signature. A curious feature of these metrics is that all but one of them are
Ricci-scalar flat.Comment: 20 page
Influence of the Pressure on the Product Distribution in the Oxidative Dehydrogenation of Propane over a Ga2O3/MoO3 Catalyst
The yields and selectivities in both the catalyzed and non-catalyzed oxidative dehydrogenation of propane were found to increase with increasing pressure. The results showed that the maximum yields of valuable ODH products could be obtained by adjusting only reactants' partial pressure, while keeping their ratio constant
Lowest Weight Representations of Super Schrodinger Algebras in One Dimensional Space
Lowest weight modules, in particular, Verma modules over the N = 1,2 super
Schrodinger algebras in (1+1) dimensional spacetime are investigated. The
reducibility of the Verma modules is analyzed via explicitly constructed
singular vectors. The classification of the irreducible lowest weight modules
is given for both massive and massless representations. A vector field
realization of the N = 1, 2 super Schrodinger algebras is also presented.Comment: 19 pages, no figur
Visual Methods for Digital Research: An Introduction
Over the last decade, images have become a key feature of digital culture; at the same time, they have made a mark on a wide range of research practices. Visual Methods for Digital Research is the first textbook to bring the fields of visual methods and digital research together. Presenting visual methods for digital and participatory research, the book covers both the application of existing digital methods for image research, and new visual methodologies developed specifically for digital research. It covers various approaches to studying digital images, including the distant reading of image collections, the close reading of visual vernaculars of social media platforms, and participatory research with visual materials. Offering a theoretical framework illustrated with hands-on techniques, Sabine Niederer and Gabriele Colombo provide compelling examples for studying online images through visual and digital means, and discuss critical data practices such as data feminism and digital methods for social and cultural research
Gravity duals for non-relativistic CFTs
We attempt to generalize the AdS/CFT correspondence to non-relativistic
conformal field theories which are invariant under Galilean transformations.
Such systems govern ultracold atoms at unitarity, nucleon scattering in some
channels, and more generally, a family of universality classes of quantum
critical behavior. We construct a family of metrics which realize these
symmetries as isometries. They are solutions of gravity with negative
cosmological constant coupled to pressureless dust. We discuss realizations of
the dust, which include a bulk superconductor. We develop the holographic
dictionary and compute some two-point correlators. A strange aspect of the
correspondence is that the bulk geometry has two extra noncompact dimensions.Comment: 12 pages; v2, v3, v4: added references, minor corrections; v3:
cleaned up and generalized dust; v4: closer to published versio
Fluiddynamik des Kammerwassers beim chronischen einfachen Glaukom: Mechanismen der Drucknormalisierung durch ein künstliches Abflusssystem
Zusammenfassung: Die Wechselwirkung zwischen Kräften, Verteilung und Absorption des Kammerwassers im subkonjunktivalen Gewebe wird anhand eines kürzlich publizierten theoretischen Modells untersucht, das die Produktion von Flüssigkeit im Auge und deren Eliminierung durch das Trabekelwerk, das uveosklerale Gewebe und einen Shunt beschreibt. Zielgröße dabei ist der intraokulare Druck. Die Mechanismen von neu geschaffenen Abflusswegen werden mithilfe der Theorie der porösen Medien dargestellt, die sich auf ein Sickerkissen beziehen, das unter dem subkonjunktivalen Gewebe liegt. Die rechnerische Analyse basiert auf der Geometrie und den Parametern, die das Zu- und Abflusssystem charakterisieren. Diese sind durch die Produktion von Kammerwasser, den chirurgisch angelegten Abflusskanal, sodann durch die Resorption in den episkleralen Gefäßen und durch die hydraulischen Eigenschaften des subkonjunktivalen Gewebes und des Sickerkissens sowie durch dessen Geometrie gegeben. Anhand parametrischer Untersuchungen können klinische Befunde physikalisch begründet werde
- …