577 research outputs found
Improved Oxygen Delivery During Cardiopulmonary Resuscitation with Interposed Abdominal Compressions
The ability of a new modification of cardiopulmonary resuscitation (CPR) to deliver oxygen to tissues was evaluated. The method utilizes standard CPR techniques with the addition of manual abdominal compressions (100 mm Hg) interposed between chest compressions, and is termed interposed abdominal compression-CPR (IAC-CPR). Oxygen delivery was measured by a spirometer in a closed circuit designed to permit positive-pressure ventilation synchronized with mechanical chest compression. Ventricular fibrillation was induced electrically in 10 anesthetized dogs. In each dog, trials of IAC-CPR and standard CPR were alternated every five minutes during a 30-minute period. Arterial and central venous blood pressures, oxygen consumption, and Fick cardiac output were monitored. The addition of interposed abdominal compression significantly (P \u3c 0.01) increased each of these hemodynamic indicators. Oxygen delivery increased from 4.12 0.39 ml O2/kg/min during standard CPR to 6.37 0.35 ml O2/kg/min during IAC-CPR. Arterial systolic blood pressure increased from 67 5 mm Hg to 90 5 mm Hg, while diastolic arterial blood pressure rose from 15 2 mm Hg to 33 3 mm Hg. Cardiac output increased from 19.9 2.6 ml/min/kg to 37.5 2.7 ml/min/kg
Cardiopulmonary resuscitation with interposed abdominal compression in dogs
This study was conducted to evaluate the hemodynamic effectiveness of a new modification of cardiopulmonary resuscitation (CPR), termed interposed abdominal compression- CPR (IAC-CPR). IAC-CPR utilizes all the steps of standard CPR with the addition of abdominal compressions interposed during the release phase of chest compression. Ventricular fibrillation was induced electrically in 10 anesthetized dogs, and either IAC-CPR or standard CPR was initiated while arterial and venous blood pressures and cardiac output were monitored. The two CPR methods were alternated every three minutes over a period of thirty minutes. The addition of interposed abdominal compressions to standard CPR improved arterial pressures and perfusion in 10/10 dogs. Brachial arterial blood pressure averaged 87/32 mmHg during IAC-CPR vs. 58/16 mmHg during standard CPR. Cardiac output (±S.E.) averaged 24.2 ±5.7 ml/min/kg during IAC-CPR vs. 13.8 ±2.6 ml/min/kg during standard CPR. IAC-CPR requires no extra mechanical equipment, and, if proven effective in human trials, may improve resuscitation success in the field and in the hospital
Potassium Efflux from Myocardial Cells Induced by Defibrillator Shock
A transient, dose-dependent cardiac depression was produced by defibrillator shocks in an isolated, working canine heart preparation perfused with oxygenated arterial blood from a support dog. Accompanying this depression was an efflux of potassium (K+ ), forced out of the myocardial cells by the passage of defibrillating current. The transient increase in extracellular K + concentration was recorded graphically in the venous outflow. It was found that 5-msec rectangular wave shocks, from three to ten times defibrillatory current threshold, released doserelated pulses of K+ . We conclude that because extracellular K + is a myocardial depressant, at least part of the myocardial depression after defibrillation is caused by the release of K+ from the myocardial cells
Efficacy and safety of the reciprocal pulse defibrillator current waveform
The efficacy and safety of a new defibrillating current waveform, consisting of a low-tilt 5 ms trapezoidal pulse followed closely by a second identical pulse of opposite polarity, was tested m seven isolated, perfused, working canine hearts suspended in an isoresistive, isosmotic shock bath at 37 oC. The efficacy and safety of the reciprocal pulse was compared with a single 5 ms pulse, a single 10 ms pulse, and a dual (unidirectional) 5 ms pulse waveform. The mean threshold average current densities for the 5 ms single pulse, 10 ms single pulse, dual 5 ms pulse, and reciprocal pulse (absolute values) were 50, 38, 36, and 37 mA/cm2, respectively. The corresponding mean threshold energy densities in the shock bath were 2.8, 2.9, 2.9, and 3.1 mJ/cm3. Despite the differences in threshold current density among the waveforms, no differences in safety factor (shock strength for 50 per cent post-shock depression, divided by threshold shock strength) were found among the waveforms. The current safety factors were 5.4, 5.4, 5.6, and 5.5 for the 5 ms single pulse, 10 ms single pulse, dual unidirectional pulse and reciprocal pulse, respectively. The corresponding energy density safety factors were 25, 27, 29, and 27. Thus the use of this reciprocal pulse waveform provides no advantage in efficacy or safety over waveforms of the same total duration
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
A nonlinear detection algorithm for periodic signals in gravitational wave detectors
We present an algorithm for the detection of periodic sources of
gravitational waves with interferometric detectors that is based on a special
symmetry of the problem: the contributions to the phase modulation of the
signal from the earth rotation are exactly equal and opposite at any two
instants of time separated by half a sidereal day; the corresponding is true
for the contributions from the earth orbital motion for half a sidereal year,
assuming a circular orbit. The addition of phases through multiplications of
the shifted time series gives a demodulated signal; specific attention is given
to the reduction of noise mixing resulting from these multiplications. We
discuss the statistics of this algorithm for all-sky searches (which include a
parameterization of the source spin-down), in particular its optimal
sensitivity as a function of required computational power. Two specific
examples of all-sky searches (broad-band and narrow-band) are explored
numerically, and their performances are compared with the stack-slide technique
(P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers
We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory
The Mechanisms Responsible for Lack of Reproducible Induction of Atrioventricular Nodal Reentrant Tachycardia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75434/1/j.1540-8167.1996.tb00556.x.pd
A Quantitative Fluoroscopic Comparison of the Coronary Sinus Ostium in Patients With and Without AV Nodal Reentrant Tachycardia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75367/1/j.1540-8167.1995.tb00444.x.pd
- …