8,103 research outputs found

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure

    Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages

    Full text link
    In this paper, the scheme of quantum computing based on Stark chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement the quantum-state manipulations in the flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark-shifts. Then, assisted by various transition pulses universal quantum logic gates as well as arbitrary quantum-state preparations could be implemented. Compared with the usual PI-pulses operations widely used in the experiments, the adiabatic population passage proposed here is insensitive the details of the applied pulses and thus the desirable population transfers could be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure

    Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution

    Get PDF
    With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (̃200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ̃20-fs duration

    Unsupervised Feature Selection with Adaptive Structure Learning

    Full text link
    The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods
    corecore