8 research outputs found

    iPSC-Kolonie, aufgenommen mit High-Speed-Mikroskop

    No full text
    Images of iPSCs taken in the StemCellFactory (more information about the project: Elanzew A, Nießing B, Langendoerfer D et al. (2020) The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells. Front. Bioeng. Biotechnol. 8:580352. doi: 10.3389/fbioe.2020.580352). The images show induced pluripotent stem cells at different times during their development. A Nikon Ti-Eclipse phase contrast microscope equipped with faster stage (Märzhäuser Wetzlar Scan IM 130 x 85), camera (PCO Edge 4.2) and lighting was used for all images.Bilder von iPS, die in der StemCellFactory aufgenommen wurden (weitere Informationen über das Projekt: Elanzew A, Nießing B, Langendoerfer D et al. (2020) The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells. Front. Bioeng. Biotechnol. 8:580352. doi: 10.3389/fbioe.2020.580352). Die Bilder zeigen induzierte pluripotente Stammzellen zu verschiedenen Zeitpunkten ihrer Entwicklung. Für alle Untersuchungen wurde ein Nikon Ti-Eclipse Phasenkontrastmikroskop mit schnellerem Tisch (Märzhäuser Wetzlar Scan IM 130 x 85), Kamera (PCO Edge 4.2) und Beleuchtung verwendet.grant no. 005-1007-0021 (StemCellFactory I)grant no. 005-1403-0102 (StemCellFactory II)grant no. EFRE-0800978 (StemCellFactory III)Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie NR

    Techno-Economic Analysis of Automated iPSC Production

    No full text
    Induced pluripotent stem cells (iPSC) open up the unique perspective of manufacturing cell products for drug development and regenerative medicine in tissue-, disease- and patient-specific forms. iPSC can be multiplied almost without restriction and differentiated into cell types of all organs. The basis for clinical use of iPSC is a high number of cells (approximately 7 × 107 cells per treatment), which must be produced cost-effectively while maintaining reproducible and high quality. Compared to manual cell production, the automation of cell production offers a unique chance of reliable reproducibility of cells in addition to cost reduction and increased throughput. StemCellFactory is a prototype for a fully automated production of iPSC. However, in addition to the already tested functionality of the system, it must be shown that this automation brings necessary economic advantages. This paper presents that fully automated stem cell production offers economic advantages in addition to increased throughput and better quality. First, biological and technological basics for a fully automated production of iPSC are presented. Second, the basics for profitability calculation are presented. Third, profitability of both manual and automated production are calculated. Finally, different scenarios effecting the profitability of manual and automated production are compared

    Adaptive phase contrast microscopy to compensate for the meniscus effect

    No full text
    Abstract Phase contrast is one of the most important microscopic methods for making visible transparent, unstained cells. Cell cultures are often cultivated in microtiter plates, consisting of several cylindrical wells. The surface tension of the culture medium forms a liquid lens within the well, causing phase contrast conditions to fail in the more curved edge areas, preventing cell observation. Adaptive phase contrast microscopy is a method to strongly increase the observable area by optically compensating for the meniscus effect. The microscope’s condenser annulus is replaced by a transmissive LCD to allow dynamic changes. A deformable, liquid-filled prism is placed in the illumination path. The prism’s surface angle is adaptively inclined to refract transmitted light so that the tangential angle of the liquid lens can be compensated. Besides the observation of the phase contrast image, a beam splitter allows to simultaneously view condenser annulus and phase ring displacement. Algorithms analyze the displacement to dynamically adjust the LCD and prism to guarantee phase contrast conditions. Experiments show a significant increase in observable area, especially for small well sizes. For 96-well-plates, more than twelve times the area can be examined under phase contrast conditions instead of standard phase contrast microscopy

    Automating Laboratory Processes by Connecting Biotech and Robotic Devices—An Overview of the Current Challenges, Existing Solutions and Ongoing Developments

    No full text
    The constantly growing interest and range of applications of advanced cell, gene and regenerative therapies raise the need for efficient production of biological material and novel treatment technologies. Many of the production and manipulation processes of such materials are still manual and, therefore, need to be transferred to a fully automated execution. Developers of such systems face several challenges, one of which is mechanical and communication interfaces in biotechnological devices. In the present state, many devices are still designed for manual use and rarely provide a connection to external software for receiving commands and sending data. However, a trend towards automation on the device market is clearly visible, and the communication protocol, Open Platform Communications Data Access (OPC DA), seems to become established as a standard in biotech devices. A rising number of vendors offer software for device control and automated processing, some of which even allow the integration of devices from multiple manufacturers. The high, application-specific need in functionalities, flexibility and adaptivity makes it difficult to find the best solution and, in many cases, leads to the creation of new custom-designed software. This report shall give an overview of existing technologies, devices and software for laboratory automation of biotechnological processes. Furthermore, it presents an outlook for possible future developments and standardizations

    Automated Production at Scale of Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells, Chondrocytes and Extracellular Vehicles: Towards Real-Time Release

    No full text
    <p>Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) are amenable for use in a clinical setting for treatment of osteoarthritis (OA), which remains one of the major illnesses worldwide. Aside from iPSC-derived iMSCs, chondrocytes (iCHO) and extracellular vesicles (EV) are also promising candidates for treatment of OA. Manufacturing and quality control of iPSC-derived therapies is mainly manual and thus highly time consuming and susceptible to human error. A major challenge in translating iPSC-based treatments more widely is the lack of sufficiently scaled production technologies from seeding to fill-and-finish. Formerly, the Autostem platform was developed for the expansion of tissue-derived MSCs at scale in stirred tank bioreactors and subsequent fill-and-finish. Additionally, the StemCellDiscovery platform was developed to handle plate-based cultivation of adherent cells including their microscopic analysis. By combining the existing automation technology of both platforms, all required procedures can be integrated in the AutoCRAT system, designed to handle iPSC expansion, differentiation to iMSCs and iCHOs, pilot scale expansion, and formulation of iMSCs as well as extracellular vesicles and their purification. Furthermore, the platform is equipped with several in-line and at-line assays to determine product quality, purity, and safety. This paper highlights the need for adaptable and modular automation concepts. It also stresses the importance of ensuring safety of generated therapies by incorporating automated release testing and cleaning solutions in automated systems. The adapted platform concepts presented here will help translate these technologies for clinical production at the necessary scale.</p&gt
    corecore