7 research outputs found

    Relaying systems with reciprocity mismatch : impact analysis and calibration

    Get PDF
    Cooperative beamforming can provide significant performance improvement for relaying systems with the help of the channel state information (CSI). In time-division duplexing (TDD) mode, the estimated CSI will deteriorate due to the reciprocity mismatch. In this work, we examine the impact and the calibration of the reciprocity mismatch in relaying systems. To evaluate the impact of the reciprocity mismatch for all devices, the closed-form expression of the achievable rate is first derived. Then, we analyze the performance loss caused by the reciprocity mismatch at sources, relays, and destinations respectively to show that the mismatch at relays dominates the impact. To compensate the performance loss, a two-stage calibration scheme is proposed for relays. Specifically, relays perform the intra-calibration based on circuits independently. Further, the inter-calibration based on the discrete Fourier transform (DFT) codebook is operated to improve the calibration performance by cooperation transmission, which has never been considered in previous work. Finally, we derive the achievable rate after relays perform the proposed reciprocity calibration scheme and investigate the impact of estimation errors on the system performance. Simulation results are presented to verify the analytical results and to show the performance of the proposed calibration approach

    Hierarchical-Absolute Reciprocity Calibration for Millimeter-wave Hybrid Beamforming Systems

    Full text link
    In time-division duplexing (TDD) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the reciprocity mismatch severely degrades the performance of the hybrid beamforming (HBF). In this work, to mitigate the detrimental effect of the reciprocity mismatch, we investigate reciprocity calibration for the mmWave-HBF system with a fully-connected phase shifter network. To reduce the overhead and computational complexity of reciprocity calibration, we first decouple digital radio frequency (RF) chains and analog RF chains with beamforming design. Then, the entire calibration problem of the HBF system is equivalently decomposed into two subproblems corresponding to the digital-chain calibration and analog-chain calibration. To solve the calibration problems efficiently, a closed-form solution to the digital-chain calibration problem is derived, while an iterative-alternating optimization algorithm for the analog-chain calibration problem is proposed. To measure the performance of the proposed algorithm, we derive the Cram\'er-Rao lower bound on the errors in estimating mismatch coefficients. The results reveal that the estimation errors of mismatch coefficients of digital and analog chains are uncorrelated, and that the mismatch coefficients of receive digital chains can be estimated perfectly. Simulation results are presented to validate the analytical results and to show the performance of the proposed calibration approach

    Hierarchical-absolute reciprocity calibration for millimeter-wave hybrid beamforming systems

    Get PDF
    In time-division duplexing (TDD) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the reciprocity mismatch severely degrades the performance of the hybrid beamforming (HBF). In this work, to mitigate the detrimental effect of the reciprocity mismatch, we investigate reciprocity calibration for the mmWave-HBF system with a fully-connected phase shifter network. To reduce the over-head and computational complexity of reciprocity calibration, we first decouple digital radio frequency (RF) chains and analog RF chains with beamforming design. Then, the entire calibration problem of the HBF system is equivalently decomposed into two subproblems corresponding to the digital-chain calibration and analog-chain calibration. To solve the calibration problems efficiently, a closed-form solution to the digital-chain calibration problem is derived, while an iterative-alternating optimization algorithm for the analog-chain calibration problem is proposed. To measure the performance of the proposed algorithm, we derive the Cramér-Rao lower bound on the errors in estimating mismatch coefficients. The results reveal that the estimation errors of mismatch coefficients of digital and analog chains are uncorrelated, and that the mismatch coefficients of receive digital chains can be estimated perfectly. Simulation results are presented to validate the analytical results and to show the performance of the proposed calibration approach

    Impact and calibration of nonlinear reciprocity mismatch in massive MIMO systems

    Get PDF
    Time-division-duplexing massive multiple-input multiple-output (MIMO) systems estimate the channel state information (CSI) by leveraging the uplink-downlink channel reciprocity, which is no longer valid when the mismatch arises from the asymmetric uplink and downlink radio frequency (RF) chains. Existing works treat the reciprocity mismatch as constant for simplicity. However, the practical RF chain consists of nonlinear components, which leads to nonlinear reciprocity mismatch. In this work, we examine the impact and the calibration approach of the nonlinear reciprocity mismatch in massive MIMO systems. To evaluate the impact of the nonlinear mismatch, we first derive the closed-form expression of the ergodic achievable rate. Then, we analyze the performance loss caused by the nonlinear mismatch to show that the impact of the mismatch at the base station (BS) side is much larger than that at the user equipment side. Therefore, we propose a calibration method for the BS. During the calibration, polynomial function is applied to approximate the nonlinear mismatch factor, and over-the-air training is employed to estimate the polynomial coefficients. After that, the calibration coefficients are computed by maximizing the downlink achievable rate. Simulation results are presented to verify the analytical results and to show the performance of the proposed calibration approach

    Future Development of Natural Villages in Rural China Based on the Analysis of Dissipative Structure Theory

    No full text
    Recently, urbanization, economic development, and industrial structure adjustment are decreasing the number of permanent residents in rural areas in China on a yearly basis; the rural population is aging and the natural villages are gradually declining or even dying out. Considering the overall situation of rural natural villages in China, we selected a typical village in Shandong province as the object for field research. This study analyzes the idle situation of rural houses and the population distribution in the rural areas and summarizes the specific characteristics that indicate the decline of natural villages. Subsequently, it also analyzes the underlying reasons for the decline using the dissipative structure theory, and proposes that a new dissipative structure should be established by opening and activating conventional villages, protecting featured villages, and integrating declined villages. Furthermore, the internal management of the updated villages should be improved to increase the cohesion and self-organizing ability of the new system

    Vacuum-Free, All-Solution, and All-Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layer-by-Layer Codoped Polymeric Electrodes

    No full text
    Nonfullerene organic photovoltaics (OPVs) have achieved a breakthrough in pushing the efficiency beyond 15%. Although this sheds light on OPV commercialization, the high cost associated with the scalable device fabrications remains a giant challenge. Herein, a vacuum-free, all-solution and all-air processed OPV is reported that yields 11.12% efficiency with a fill factor of 0.725, due to the usages of high-merit polymeric electrodes and modified active blends. The design principle toward the high-merit electrodes is to induce heavy acid doping into the matrices for a raised carrier concentration and mobility, make a large removal of insulating components in the whole matrices rather than surfaces, and restrain the formation of large-domain aggregates. A unique layer-by-layer doping is developed to enable the polymeric electrodes with record-high trade-offs between optical transmittance and electrical conductivity. Moreover, solvent vapor annealing is proposed to boost device efficiency and it has the advantages of finely adjusting the active blend morphology and raising the electron mobility. The resulting devices are highly efficient and most (approximate to 91%) of the initial efficiency are maintained in 30 day storage. This work indicates bright future for making cost-effective all-solution processed OPVs in air
    corecore