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Impact and Calibration of Nonlinear Reciprocity
Mismatch in Massive MIMO Systems

Rongjiang Nie, Li Chen, Nan Zhao, Senior Member, IEEE,
Yunfei Chen, Senior Member, IEEE, Weidong Wang, and Xianbin Wang, Fellow, IEEE

Abstract—Time-division-duplexing massive multiple-input
multiple-output (MIMO) systems estimate the channel state
information (CSI) by leveraging the uplink-downlink channel
reciprocity, which is no longer valid when the mismatch arises
from the asymmetric uplink and downlink radio frequency
(RF) chains. Existing works treat the reciprocity mismatch as
constant for simplicity. However, the practical RF chain consists
of nonlinear components, which leads to nonlinear reciprocity
mismatch. In this work, we examine the impact and the
calibration approach of the nonlinear reciprocity mismatch in
massive MIMO systems. To evaluate the impact of the nonlinear
mismatch, we first derive the closed-form expression of the
ergodic achievable rate. Then, we analyze the performance loss
caused by the nonlinear mismatch to show that the impact of the
mismatch at the base station (BS) side is much larger than that
at the user equipment side. Therefore, we propose a calibration
method for the BS. During the calibration, polynomial function
is applied to approximate the nonlinear mismatch factor, and
over-the-air training is employed to estimate the polynomial
coefficients. After that, the calibration coefficients are computed
by maximizing the downlink achievable rate. Simulation results
are presented to verify the analytical results and to show the
performance of the proposed calibration approach.

Index Terms—Calibration, massive MIMO, nonlinear RF
chain, reciprocity mismatch.

I. INTRODUCTION

Massive multiple-input multiple-out (MIMO) has been iden-
tified as one of the key enabling technologies for the 5th
generation (5G) mobile communication networks [1]. With
a great number of antennas deployed at the base station
(BS), massive MIMO can significantly improve the capacity,
throughput, and spectral efficiency of wireless communication
systems [2].

Since the antenna number is large, the acquisition of the
channel state information (CSI) becomes a great challenge [3].
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To reduce the heavy overhead in obtaining the downlink CSI,
massive MIMO systems are typically assumed to operate in
time division duplexing (TDD) mode, and BS estimates the
downlink CSI from the uplink pilots transmitted by the user
equipment (UE) via exploiting the channel reciprocity [4]. In
practice, the channel observed by the baseband processor con-
sists of not only the reciprocal wireless propagation channel,
but also the radio frequency (RF) gains resulting from the
frequency responses of hardware devices, i.e., high power am-
plifier (HPA), filters, analog-to-digital converter (ADC), and
digital-to-analog converter (DAC) [5]. Due to the involvement
of different devices, the overall gains of the RF chains at
BS and UEs are typically asymmetric, which leads to the
reciprocity mismatch of the uplink and downlink channels [6].

To study how the reciprocity mismatch affects the system
performance, previous works have investigated the impact of
the mismatch on the MIMO system with linear precoding
techniques, e.g., zero-forcing (ZF) and matched filter (MF).
Generally, the reciprocity mismatch can degrade the perfor-
mances of both ZF and MF precoding techniques [7]. By
comparing the performances of ZF and MF with the mismatch,
it can be found that ZF is more sensitive to the reciprocity
mismatch and its performance loss is much larger than that of
MF, especially in the high signal-to-noise ratio (SNR) regime
[8]. As the antenna number of the BS grows, the performances
of ZF and MF are asymptotically identical [9]. Wei et al. in
[10] analyzed the impact of the reciprocity mismatch at the
BS side and the UE side, and showed that both the reciprocity
mismatch at the BS side and the UE side degraded the system
performance. It is noteworthy that the performance degradation
caused by the mismatch at the BS side is much more crucial
than that at the UE side. The result reveals that it is important
to calibrate the reciprocity mismatch at the BS side. Further,
the experimental results in [11] verified the performance loss
due to the reciprocity mismatch in the practical precoded
system.

As the reciprocity mismatch severely degrades the sys-
tem performance, reciprocity calibration has attracted great
attentions in the past decade. Reciprocity calibration can be
divided into two types: hardware-circuit calibration and over-
the-air (OTA) calibration [12]. The hardware-circuit calibra-
tion requires auxiliary components, such as switches and
couplers, to connect transmit antennas and receive antennas.
Nishimori et al. in [13] first proposed an automatic hardware-
circuit calibration for the conventional MIMO system. The
calibration approach can use the transmit signal to realize a
real-time calibration during the BS transmits data streams.
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Then, the hardware-circuit calibration was applied to the
wideband wireless system in [14], where different subcarriers
were independently calibrated. In [15], an auxiliary calibration
transceiver structure was proposed for the MIMO system.
With the auxiliary transceiver, the calibration loop can be
easily extended to the BS with multiple access points, but it
inevitably increased the cost of the hardware components. To
simplify both the hardware structure and the signal processing,
Liu et al. proposed a calibration board consisting of switches
and attenuators in [16]. While hardware-circuit calibration
works efficiently in conventional MIMO systems with low cost
of hardware components, it becomes costly in massive MIMO
systems due to the large number of channels to be calibrated.
To reduce the cost, a daisy chain interconnection topology of
the circuits was applied to hardware-circuit calibration [17],
which could reduce the transceiver interconnection effort. To
further relieve the connection effort and improve the calibra-
tion performance, an optimal interconnection of the hardware-
circuit calibration was presented in [18] by minimizing the
Cramer-Rao lower bound in the calibration coefficients.

Unlike the hardware-circuit calibration, the OTA calibration
only needs to gather the training signals among uncalibrated
antennas. An OTA calibration called relative calibration was
first proposed to calibrate the TDD single-input single-output
system in the frequency domain [19]. Then, Kaltenberger et al.
proposed an OTA calibration for the multi-user MIMO system
in [20], which involved both BS and UEs, and they applied
the total least square (LS) approach to compute the calibration
coefficients. For the wideband system, the frequency-domain
calibration has to be applied in each subcarrier, which means
that the overhead and complexity of the frequency-domain
calibration increases with the number of subcarriers. To reduce
the calibration overhead and complexity for the wideband
system, a time-domain reciprocity calibration was presented
in [21], since the number of parameters in the time domain is
much less than that in the frequency domain.

In massive MIMO systems, the reciprocity calibration
method designed for conventional MIMO systems encounter
new challenges due to the heavy overhead of feeding back
the CSI from UEs. Based on theoretical and experimental
results that the reciprocity mismatch at the single-antenna
UE causes negligible impact compared with the reciprocity
mismatch at the BS side equipped with large-scale antenna
array [22], several calibration approaches called “single-side”
or “one-side” calibration were presented for the massive
MIMO system, which only calibrate the antennas at the BS.
In [23], a single-side calibration method was presented for
the massive MIMO Argos prototype. The performance of
the Argos calibration is sensitive to the fading channel and
relies on the location of the reference antenna. To overcome
the shortages of Argos, H. Wei et al. in [24] presented a
mutual coupling calibration, which utilized the strong mutual
coupling effect among adjacent antennas rather than the fading
channel. To compute the calibration coefficients efficiently,
the LS method was applied to compute the coefficients in
[25]. In [26], an OTA calibration framework was proposed
based on some existing calibration schemes. As for distributed
massive MIMO systems, a two-stage calibration approach was

proposed in [27] to reduce the overhead of the CSI feedback
among remote access points.

All the above mentioned works have simply treated the
reciprocity mismatch as a constant. However, as the reciprocity
mismatch arises from the asymmetry of the transmit and
receive RF chains, and practical RF chains are generally
composed of nonlinear components, e.g., the nonlinear HPA
[28], the reciprocity mismatch is also nonlinear, which is
called nonlinear reciprocity mismatch. With the expected use
of millimeter waveband and low-cost RF devices in massive
MIMO, nonlinearity will become more severe for 5G and
beyond networks. Hence, the nonlinear mismatch needs to
be studied in massive MIMO systems. Compared with the
linear reciprocity calibration, the nonlinear calibration has
three great challenges. As the reciprocity mismatch factor
varies with the transmit power, a simple training scheme with
the single-power pilot is no longer applicable. Due to the
complex expression of the transform characteristic of the non-
linear components, it is difficult to determine the relationship
function between the mismatch factor and the transmit power.
Further, the relationships between the calibration coefficients
are also nonlinear functions so that it is difficult to solve the
calibration coefficients.

The nonlinearity compensation of transmitters, e.g., the non-
linear predistortion, has been extensively studied in wireless
systems [29]–[31]. The works on nonlinearity only focused
on offsetting the defect of the single RF chain. Since the
reciprocity mismatch is jointly caused by the defects of the
transmit chain and the receive chain, existing solutions to
the nonlinear transmitter compensation techniques are not
sufficient to address the nonlinear reciprocity mismatch in
massive MIMO systems.

Motivated by the above observations, we investigate the
nonlinear reciprocity mismatch in TDD multi-user massive
MIMO systems. To study the impact of the nonlinear reci-
procity mismatch, we first derive the closed-form expression
of the ergodic achievable rate. Then, the performance loss
due to the mismatch at the BS side and UE side is analyzed,
respectively. Based on these analytical results, we propose a
novel nonlinear reciprocity calibration approach. To sample the
nonlinear response of the RF chain varying with the transmit
power, an OTA-polynomial training approach is employed
in the calibration. Specifically, the polynomial functions are
applied to characterize the relationship between the mismatch
factor and the transmit power. The polynomial coefficients
are estimated by the OTA training with multi-power training
pilots. Finally, to compute the nonlinear calibration coefficients
efficiently, we formulate an optimization problem which seeks
to maximize the downlink achievable rate. The main contri-
butions of the work can be summarized as follows.

• Impact analysis of the nonlinear reciprocity mis-
match: Under the nonlinear reciprocity mismatch, we
first derive the closed-form expression of the downlink
ergodic achievable rate for the multi-user massive MIMO
system with ZF precoding. Based on this, the impact
of the nonlinear reciprocity mismatch on the system
performance is examined.
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• OTA-polynomial training of nonlinear mismatch fac-
tors: To estimate the nonlinear response of the transmit
RF chain varying with the transmit power, we propose
the OTA-polynomial training approach. The polynomial
fitting approach is applied to approximate the nonlinear
function between the nonlinear reciprocity mismatch fac-
tor and the transmit power. After that, the OTA training
with multi-power training pilots is applied to estimate the
polynomial coefficients.

• Toward optimal nonlinear calibration coefficients: To
compute the nonlinear calibration coefficients efficiently,
we formulate an optimization problem seeking to max-
imize the downlink achievable rate. A fast algorithm
based on sequential linear programming is presented to
efficiently solve the nonlinear calibration coefficients.

The rest of the paper is organized as follows. Section II
describes the system model. The impact of the nonlinear
reciprocity mismatch is analyzed in section III. In section
IV, nonlinear reciprocity calibration is proposed, including the
multi-power training pilots, the nonlinear reciprocity mismatch
polynomial fitting, and the optimal nonlinear calibration coef-
ficients. Simulation and numerical results are given in Section
V, and the conclusion is given in VI.

Throughout the paper, vectors and matrices are denoted
in bold lowercase and uppercase respectively: a and A. Let
AT , AH , and A−1 denote the transpose, conjugate trans-
pose, and inverse of a matrix A respectively. tr(·) stands
for the trace operator and E(·) represents the expectation
operation. Let |a| denote the amplitude of the complex number
a. diag(a1, · · · , aN ) denotes a N by N diagonal matrix
with diagonal entries given by a1, · · · , aN . N (µ, σ2) and
CN (µ, σ2) represent for normal distribution and complex
normal distribution with mean µ and variance σ2, respectively.
U(a, b) denotes uniform distribution on the interval [a, b]. C
and R stand for the complex numbers and real numbers,
respectively. Let [1 : N ] denote the set {1, 2, · · · , N}.

II. SYSTEM MODEL

We consider a multi-user massive MIMO system consisting
of K single-antenna UEs and a BS equipped with M antennas,
as illustrated in Fig. 1, where M and K are large. The
transmit RF chains are subject to a typical nonlinear device,
i.e., nonlinear HPA1. Without loss of generality, a memoryless
HPA model called Solid State Power Amplifier (SSPA) is
considered in the system, which has been extensively used
to characterize the HPA [29].

Let xu,k be the transmit signal of the k-th UE and xb,m

be the transmit signal at the m-th antenna of the BS. The
transform functions of the HPAs can be characterized as

x̂u,k =

√
b0vkxu,k

2v

√
1 +

(
|xu,k|
Bsat,k

)2v
=
√
b0Bk(|xu,k|)xu,k, (1)

1Although, in addition to HPAs, the nonlinearity may also be caused
by other devices, the HPA is the major source of nonlinearity, and most
presented mathematical models have been originally introduced for HPAs [32].
Therefore, we consider the nonlinearity mainly caused by HPAs.
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Fig. 1. A multi-user massive MIMO system with reciprocity mismatch.

x̂b,m =

√
a0tmxb,m

2v

√
1 +

(
|xb,m|
Asat,m

)2v
=
√
a0Am(|xb,m|)xb,m, (2)

where Bk(x) = vk/
2v
√

1 + (|x|/Bsat,k)2v denotes the trans-
form function of the HPA at the k-th UE, Am(x) =
tm/

2v
√

1 + (|x|/Asat,m)2v represents the transform function
of the m-th HPA at the BS, ν refers to the smoothness factor,
a0 ∈ R denotes the small-signal amplification gain of the
HPAs at the BS, Asat,m = Asatam ∈ R is the saturation level
of the m-th HPA at the BS, am ∈ R represents the various
saturation of different HPAs, tm ∈ C is the vibration of small-
signal gain a0, b0 ∈ R denotes the small-signal amplification
gain of the HPAs at UEs, Bsat,k ∈ R is the saturation level of
HPAs of UEs, vk ∈ C represents the vibration of the small-
signal gain b0. Both am, vk, and |tm| follow the log-normal
distribution, i.e., ln am ∼ N (0, δ2

a), ln vk ∼ N (0, δ2
v), and

ln |tm| ∼ N (0, δ2
t ), and ∠tm obeys the uniform distribution

as ∠tm ∼ U(−θt, θt). Moreover, we use input back-off (IBO)
to measure the relationship between the input power and the
saturation level of the HPA. From [29], IBO is defined as

IBO = 10 log10

(
Asat

σx

)
, (3)

where σ2
x is the average power of the input signal.

The overall channel observed by the baseband processor
is composed of the reciprocal wireless propagation channel
and the non-reciprocal RF gain. Let H = ΦHr ∈ Ck×M
denote the wireless propagation channel, where Hr ∈ Ck×M
is the Rayleigh fading channel with each entry following
CN (0, 1), Φ = diag(φ1, · · · , φK) ∈ RK×K , and φk denotes
the large-scale path loss between the BS and the k-th UE. By
considering the defects of the transmit and receive RF chain,
the overall uplink and downlink channels can be modeled as

HUL = RHTB, (4a)
HDL = UHA, (4b)

where R = diag(r1, · · · , rM ), rm ∈ C denotes the re-
ceive RF gain of the m-th antenna of the BS, A =
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diag(A1(|xb,1|), · · · ,AM (|xb,M |)), U = diag(u1, · · · , uK),
uk ∈ C is the receive RF gain of the k-th UE, and B =
diag(b1, · · · , bK), bk = Bk(|xu,k|) ∈ C. Both the amplitudes
of rm and uk follow log-normal distribution, i.e., ln |rm| ∼
N (0, δ2

r ), ln |uk| ∼ N (0, δ2
u), and their phases obey uniform

distribution, i.e., ∠rm ∼ U(−θr, θr), ∠uk ∼ U(−θu, θu).
During the downlink phase, the BS transmits the precoded

signal to UEs. Let y = [y1, · · · , yK ]T denote the signal vector
received by all UEs, where yk is the received signal at the k-th
UE. The downlink signal can be represented as

y =
√
a0HDL Ws︸︷︷︸

xb

+n, (5)

where s ∈ CK×1 is the symbol vector with zero mean and
variance E

{
ssH

}
= ρtIK , ρt ∈ R represents the average

transmit power of the BS, W ∈ CM×K denotes the precoding
matrix, and n denotes the additive white Gaussian noise
(AWGN) vector with n ∼ CN (0, σ2

nIK). In this paper, we
consider the ZF precoding technique, and the precoding matrix
can be given by

W =
1√
βZF

H∗UL(HT
ULH∗UL)−1, (6)

where βZF denotes the normalization scalar defined as

βZF = E
{

tr
[
(HT

ULH∗UL)−1
]}
. (7)

As the overall downlink and uplink channels are not recip-
rocal, the multi-user massive MIMO system suffers from the
reciprocity mismatch. Since the multiplicative RF matrices A
and B are related to the transmit power, we call it nonlinear
reciprocity mismatch.

III. PERFORMANCE ANALYSIS OF NONLINEAR
RECIPROCITY MISMATCH

In this section, we first introduce the performance analysis
of the existing linear reciprocity mismatch. Then, the closed-
form expression of the ergodic achievable rate is derived for
the massive MIMO system in the presence of the nonlinear
reciprocity mismatch. Based on the closed-form expression,
we further analyze the impact of the nonlinear reciprocity
mismatch on the performance of the downlink transmission.

A. Performance of Existing Linear Reciprocity Mismatch

To analyze the system performance, we refer to the tech-
nique in [33] which is widely used in the field of massive
MIMO [8], [9], [34]. This technique only utilize the statistical
channel to detect the received signals, when UEs do not have
any channel estimate. Therefore, by regarding the reciprocity
mismatch as the constant [8]–[10], i.e., Am(|xb,m|) = tm and
Bk(|xu,k|) = vk, the received signal (5) can be further denoted
as

yk =
√
a0 ukhkTwk︸ ︷︷ ︸

hlrm
eq,k,k

sk +
√
a0

K∑
i6=k

ukhkTwi︸ ︷︷ ︸
hlrm
eq,k,i

si + nk

=
√
a0E

{
hlrm

eq,k,k

}
sk︸ ︷︷ ︸

sES
lrm,k

+nFCI
lrm,k + nMUI

lrm,k + nk,
(8)

where hk is the k-th row of H, wk denotes the k-th column of
W, T = diag(t1, · · · , tM ), sES

lrm,k denotes the effective useful
signal received by the UE k, nFCI

lrm,k and nMUI
lrm,k can be given

by

nFCI
lrm,k =

√
a0

(
hlrm

eq,k,k − E
{
hlrm

eq,k,k

})
sk, (9)

nMUI
lrm,k =

√
a0

K∑
i 6=k

hlrm
eq,k,isi. (10)

Since the residual
(
hlrm

eq,k,k − E
{
hlrm

eq,k,k

})
captures the fluc-

tuation of the precoded channel, nFCI
lrm,k denotes the interfer-

ence resulting from the fluctuation of the precoded channel
and can be called fluctuant-channel interference (FCI). Further,
nMUI

lrm,k represents the multiple-user interference (MUI) due to
the signal for other UEs.

To study the impact of the reciprocity mismatch, the ergodic
achievable rate is adopt to characterize the performance of the
massive MIMO system as follows.

Definition 1 (Downlink ergodic achievable rate). According
to [6], [8], [9], the ergodic achievable rate can be defined as

Rlrm
k = log

(
1 + γlrm

k

)
, ∀k ∈ [1 : K], (11)

where SINRk denotes the signal-to-interference-and-noise ra-
tio (SINR) at the k-th UE as

γlrm
k =

∣∣∣E{hlrm
eq,k,k

}∣∣∣2
Var

{
hlrm

eq,k,k

}
+
∑K
i 6=k E

{
|hlrm

eq,k,i|2
}

+
σ2
n

a0ρt

. (12)

Then, the closed-form expression of SINRk for the massive
MIMO system can be denoted as follows.

Lemma 1 (Closed-form expression of SINR). According to
[6], [9], the downlink SINR for ZF with the linear reciprocity
mismatch can be given by

γlrm
ZF,k =

a0ρt
M−K

tr{Φ−2} sinc2(θt)sinc2(θr)

eδ
2
r +δ2v−δ2t

(
a0ρtφ2

k
M−K
M ε1 + σ2

n

) , (13)

where ε1 = e2δ2t + e2δ2r − 2sinc(θt)sinc(θr)e
(δ2t−δ

2
r )/2.

Based on (13), we can further derive the ideal achievable
rate of the massive MIMO with the ZF precoding. By setting
δt = δr = δv = 0 and θt = θr = 0, the γlrm

ZF,k can degenerate
into the ideal SNR denoted as

γideal =
M −K

tr
{
Φ−2

} · a0ρt

σ2
n

. (14)

By substituting (14) into (11), the ideal downlink achievable
rate can be given by RIdeal = log(1 + γideal).

By comparing (13) and (14), it can be seen that the
reciprocity mismatch leads to the interference which degrades
the SINR. Although Lemma 1 shows the impact of the linear
reciprocity mismatch, the nonlinear reciprocity mismatch has
never been studied. Therefore, in the remainder of this section,
we focus on the impact of the nonlinear reciprocity mismatch.
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B. Downlink SINDR and Ergodic Achievable Rate

To derive the closed-form expression of the achievable rate,
we apply the Bussgang’s theory [29], [35] to characterize
the nonlinearities of the HPAs at the BS side. The theory
states that the output of the nonlinear HPA can be expressed
in terms of a linear scale parameter of the input signal
and a nonlinear distortion which obeys the complex circular
Gaussian distribution and is independent of the input. At the
BS side, the output signal of HPAs can be further denoted as
follows.

Lemma 2 ([29, Eq. (18)]). By employing the Bussgang’s
linearization theory, the transform characteristics of the SSPA
can be further characterized as

x̂b,m = gmxb,m + dm, ∀m ∈ [1 : M ], (15)

where gm is the linear scale parameter denoted as

gm =
E
{
x∗b,mx̂b,m

}
E {|xb,m|2}

= tmµ

(
Asat,m

σx,m

)
, (16)

µ(x) = x
2

[
2x−

√
πerfc(x)exp(x2)(2x2 − 1)

]
, dm ∈ C

denotes the nonlinear Gaussian distortion with zero mean and
variance σ2

d,m as

σ2
d,m = E

{
|x̂b,m|2

}
− |gm|2E

{
|xb,m|2

}
= |tm|2λm (σx,m)

(17)
with

λm(x) =A2
sat,m +

A4
sat,m

x2
exp

(
A2

sat,m

x2

)
•

Ei

(
−
A2

sat,m

x2

)
− x2µ

(
Asat,m

x

)2

,

(18)

and Ei(x) =
∫ x
−∞ t−1etdt (x < 0) is an exponential integral

function.

According to Lemma 2, the downlink signal received by
UEs can be rewritten as

y =
√
a0UHx̂b + n

=
√
a0UHGxb +

√
a0UHd + n,

(19)

where G = diag(g1, · · · , gM ) and d = [d1, · · · , dM ]T .
Similar to (8), the UEs detect the signals by exploiting the

statistical effective channel, and the signal received by the k-th
UE can be further denoted as

yk =
√
a0E {heq,k,k} sk︸ ︷︷ ︸

sES
k

+nFCI
k + nMUI

k + nNLD
k + nk,

(20)

where heq,k,k = ukhkGwk denotes the equivalent channel
gain, sES

k denotes the effective useful signal received by the
UE k, nFCI

k denotes the interference resulting from the fluctu-
ation of the precoded channel, nMUI

k represents the multiple-
user interference, nFCI

k and nMUI
k can be expressed as

nFCI
k =

√
a0 (heq,k,k − E {heq,k,k}) sk, (21)

nMUI
k =

√
a0

K∑
i 6=k

heq,k,isi, (22)

and nNLD
k denotes the received nonlinear distortion for the

k-th UE due to the nonlinear HPAs of the BS

nNLD
k =

√
a0ukhkd. (23)

Compared with the linear reciprocity mismatch, the signal
in the presence of the nonlinear reciprocity mismatch has an
extra nonlinear distortion term NLDk. Therefore, we use the
signal-to-interference-plus-noise-and-distortion ratio (SINDR)
to measure the ratio between the average power of the useful
signal and the sum power of the interference, noise, and
distortion.

Definition 2 (Downlink SINDR and achievable rate). Based
on (20), the SINDR at the k-th UE can be defined as
(24) shown at the top of the next page, where Σd =
diag(σ2

d,1, · · · , σ2
d,M ) is the variance matrix of the distortion.

The downlink ergodic achievable rate in the presence of the
nonlinear reciprocity mismatch can be defined as

Rk = log (1 + γk) , ∀k ∈ [1 : K]. (25)

As UEs treat the sum of the noise and the interference
as equivalent AWGN uncorrelated with the useful signal,
the ergodic rate in Definition 2 is upper bounded by the
capacity and legitimately achievable [6], [8], [9]. Then, we
can derive the closed-form expression of the SINDR for the
multi-user massive MIMO system with ZF in the presence of
the nonlinear reciprocity mismatch.

Proposition 1 (SINDR with nonlinear reciprocity mismatch).
For a multi-user massive MIMO system with the ZF precod-
ing, the closed-form expression of the SINDR in the presence
of the nonlinear HPA and the reciprocity mismatch can be
denoted as

γZF,k =
ΥES

ZF,k

ΥFCI
ZF,k + ΥMUI

ZF,k + ΥNLD
ZF,k + σ2

n

, (26)

where ΥES
ZF,k denotes the power of the effective signal given

by

ΥES
ZF,k =

a0ρt(M −K)|uktr {GZFR∗} |2

M |bk|2tr
{
(BΦ2B∗)−1

}
tr {RR∗}

(27)

with GZF = diag(gZF,1, · · · , gZF,M ) and gZF,m =

tmµ
[
Asat,m

√
tr {RR∗}/(

√
|rm|2ρt)

]
. ΥFCI

ZF,k denotes the
power of the fluctuant-channel interference and can be given
by

ΥFCI
ZF,k =

a0ρt|uk|2tr {(GZF − αR)(G∗ZF − α∗R∗)}
(M −K)−1M2|bk|2tr {(BΦ2B∗)−1}

(28)

with α = 1
M tr

{
R−1GZF

}
. Further, ΥMUI

ZF,k is the power of
the multi-user interference, which can be denoted as

ΥMUI
ZF,k =

K∑
i 6=k

a0ρtφ
2
ktr {(GZF − αR)(G∗ZF − α∗R∗)}

(M −K)−1M2|u−1
k bi|2φ2

i tr {(BΦ2B∗)−1}
.

(29)
Finally, ΥNLD

ZF,k is the power of the nonlinear distortion given
by

ΥNLD
ZF,k = a0|uk|2φ2

ktr {ΣZF} (30)
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γk =
a0ρt|E {heq,k,k} |2

a0ρtVar {heq,k,k}+ a0ρt

∑K
i 6=k E {|heq,k,i|2}+ a0|uk|2E

{
‖hkΣ

1
2

d ‖2
}

+ σ2
n

, (24)

with ΣZF = diag(σ2
ZF,1, · · · , σ2

ZF,M ) and σ2
ZF,m =

|tm|2λm
(√
|rm|2ρt/tr {RR∗}

)
.

Proof: See Appendix A.
From Proposition 1, it can be seen that either the RF gains

GZF and R at the BS or the RF gains U and B at the
UE side have impact on the downlink system performance.
Especially, the difference of gZF,m and αrm is a key factor
for the existence of the fluctuant-channel interference and the
multi-user interference. Further, the impact of mismatch at UE
side is dependent on |uk|2/(|bk|2tr

{
(BΦ2B∗)−1

}
), which

indicates that only the amplitude mismatch at the UE has the
impact on the downlink performance.

Remark 1 (Impact of the reciprocity mismatch). During the
downlink transmission, the mismatch at the BS side is a key
factor for the existence of the interference. Besides, only the
amplitude of the mismatch at the UE side has the impact on
the downlink performance.

Since the closed-form expression of the SINDR denoted
in Proposition 1 is complicated, few insights can be directly
obtained from it. In the following section, we will consider
two special cases to gain deeper understanding of the impact
of the nonlinear reciprocity mismatch.

C. Impact Analysis of Nonlinear Reciprocity Mismatch

To further analyze the impact of the reciprocity mismatch
at the BS side and the UE side, we derive the achievable rate
at the high SINDR regime.

Proposition 2 (Achievable rate with large SINDR). By as-
suming that the SINDR is large, based on the closed-form
expression of SINDR denoted as (26), the achievable rate of
the k-th UE of the multi-user massive MIMO system can be
denoted as

RLSINDR
k = RLSNR

Ideal −∆RBS,k −∆RUE,k, (31)

where RLSNR
Ideal is given by

RLSNR
Ideal = log

(
M −K

tr {Φ−2}
· ρta0

σ2
n

)
, (32)

which represents the ideal achievable rate of each UE for the
multi-user MIMO with ZF precoding at the high SNR regime.
∆RBS,k denotes the average performance loss determined by
the nonlinear reciprocity mismatch at the BS side and is given
by

∆RBS,k = log

(
M−K
M ρta0φ

2
kε2 + σ2

eq,k

σ2
nε3

)
(33)

with ε2 = tr {(GZF − αR)(GZF − αR)∗} /M , ε3 =
|tr {GZFR∗} |2/(Mtr {RR∗}), σ2

eq,k = a0φ
2
ktr {ΣZF} +

σ2
n/|uk|2. Finally, ∆RUE,k denotes the average performance

loss determined by the nonlinear reciprocity mismatch at the
UE side denoted as

∆RUE,k = log

(
|bk|2

K
tr
{
(BB∗)−1

})
. (34)

Proof: According to (28) and (29), the sum power of the
FCI and MUI can be given by

ΥFCI
ZF,k + ΥMUI

ZF,k

=

K∑
i=1

a0ρtφ
2
ktr {(GZF − αR)(G∗ZF − α∗R∗)}

(M −K)−1M2|u−1
k bi|2φ2

i tr {(BΦ2B∗)−1}

=
(M −K)a0ρt|uk|2φ2

kε2

Mtr {(BΦ2B∗)−1}

K∑
i=1

|bkφk|−2

(a)
=

M −K
M

a0ρt|uk|2φ2
kε2,

(35)

where ε2 = tr {(GZF − αR)(G∗ZF − α∗R∗)} /M , and
the condition (a) holds due to tr

{
(BΦ2B∗)−1

}
=∑K

i=1 |biφi|−2.
By substituting (27), (30), and (35) into (26), the SINDR

can be given by

γZF,k =

a0ρt(M−K)|uk|2ε3
|bk|2tr{(BΦ2B∗)−1}

M−K
M a0ρtφ2

k|uk|2ε2 + a0|uk|2φ2
ktr {ΣZF}+ σ2

n

(b)
=

M−K
tr{Φ−2}a0ρtε3

K
|bk|2tr{(BB∗)−1}

M−K
M a0ρtφ2

kε2 + a0φ2
ktr {ΣZF}+

σ2
n

|uk|2

=
(M −K)a0ρt

tr
{
Φ−2

}
σ2

n

· ε3σ
2
n

M−K
M a0ρtφ2

kε2 + σ2
eq,k

· K

|bk|2tr {(BB∗)−1}
,

(36)

where ε3 = |tr {GZFR∗} |2/(Mtr {RR∗}), σ2
eq,k =

a0φ
2
ktr {ΣZF} + σ2

n/|uk|2, the condition (b) holds since
1
K tr

{
(BΦ2B∗)−1

}
− 1

K tr
{
(BB∗)−1

}
1
K tr

{
Φ−2

}
→ 0

when K is large [36].
Since the SINDR is large, we can approximate log(1 +

SINDR) with log(SINDR). By substituting (36) into
log(SINDR), the achievable rate at high SINDR regime can
given by

RLSINDR
k = log (γZF,k)

= log

(
(M −K)

tr
{
Φ−2

} · a0ρt

σ2
n

)
︸ ︷︷ ︸

RLSNR
Ideal

− log

(
|bk|2

K
tr
{

(BB∗)−1
})

︸ ︷︷ ︸
∆RUE,k

− log

(
M−K
M a0ρtφ

2
kε2 + σeq,k

ε3σ2
n

)
︸ ︷︷ ︸

∆RBS,k

.

(37)
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According to (14), RLSNR
Ideal denotes the ideal achievable rate

at the high SNR regime, ∆RBS,k denotes the performance
degradation caused by the reciprocity at the BS side, and
∆RUE,k means the performance degradation caused by the
reciprocity at the BS side. Hence, Proposition 2 holds.

From (34), the sum achievable rate degradation caused by
the nonlinear reciprocity mismatch at the UE side can be
further denoted as

∆RUE =

K∑
k=1

∆RUE,k =

K∑
k=1

log

(
|bk|2

K

K∑
q=1

|bq|−2

)

= K log

(
1

K

K∑
k=1

1

|bk|2

)
−

K∑
k=1

log

(
1

|bk|2

)
(a)

≥ 0,

(38)

where (a) is conditioned on the Jensen’s inequality as
log( 1

K

∑K
k=1 xk) ≥ 1

K

∑K
k=1 log(xk), and the equality holds

if and only if x1 = · · · = xK .

Remark 2 (Impact of the nonlinear reciprocity mismatch
at the UE side). From (38), ∆RUE is always larger than
0, which reveals that the nonlinear reciprocity mismatch at
the UE side can degrades the performance of the multi-user
massive MIMO system. Further, the performance loss caused
by the nonlinear mismatch at the UE side is not related to the
downlink transmit power.

According to (33), the performance degradation caused by
the nonlinear reciprocity mismatch at the BS side increases
with the average transmit power ρt. Due to the complex
expression of gZF,m and σZF,m, it is difficult to thoroughly
analyze the impact of the average power and the saturation
level Asat,m from (33). In practice, the power of the input
signal of the HPA is less than a maximum acceptable input
power, and the IBO is larger than a threshold. Therefore, to
further analyze the impact of the nonlinear amplification and
the reciprocity mismatch at the BS side, we consider a special
case where the IBO is large and the hardware of UEs is perfect.
Based on the assumption, the SINDR can be further denoted
as follows.

Proposition 3 (SINDR with large IBO). Suppose that the
hardware and HPAs of UEs are perfect, i.e., uk = vk = 1
and Bsat � |xu,k|. When the saturation level of the HPA is
larger than the average power of the input signal of the BS,
the downlink SINDR of the multi-user massive MIMO system
with ZF in the presence of the nonlinear reciprocity mismatch
can be given by

γLIBO
ZF,k =

a0ε4
(M−K)
tr{Φ−2}

(
1− 2ρte

δ2a

MA2
sat

)
ρt

M−K
M a0φ2

kε3

(
1− 2ρte

δ2a

MA2
sat

)
ρt + σ2

n

, (39)

where ε3 = e2δ2t + (e2δ2r − 2)eδ
2
t+δ2r sinc2(θt)sinc2(θr), and

ε4 = sinc2(θt)sinc2(θr)e
δ2t−δ

2
r .

Proof: Proof see Appendix B.
From (39), since the average transmit power ρt/M is less

than A2
sat, the SINDR always increases with ρt. In addition,

the SINDR also increases with the saturation level Asat.

When the sum power of the fluctuant-channel interference and
multi-user interference dominates the denominator of SINDR,
SINDR would approach an upper limit subject to the ratio of
ε3 and ε4. Moreover, increasing the number of the antennas M
at the BS can also increase SINDR, which can be explained
from two aspects. The antenna array gain of BS increases as
more antennas are deployed at the BS. Increasing the number
of antennas means that the average power allocated to each
antenna decreases, which reduces the nonlinearity of the HPA.

Remark 3 (Impact of the nonlinear reciprocity at the BS
side). The reciprocity mismatch at the BS side generates
the fluctuant-channel interference and multi-user interference,
which dramatically degrades the system performance. Besides,
the performance loss due to the mismatch at the BS side
increases with the average transmit power. Further, the non-
linearity of the HPA can exacerbate the reciprocity mismatch
and the performance loss.

From the above analytical results, the performance loss due
to the mismatch at the BS side increases with the transmit
power, while the performance loss due to the mismatch at
the UE side remains constant. This shows that the impact of
the nonlinear reciprocity mismatch at the BS side is much
more severe than that at the UE side. Therefore, the reciprocity
calibration at the BS side is essential for the multi-user massive
MIMO system to improve the system performance.

IV. CALIBRATION OF NONLINEAR RECIPROCITY
MISMATCH

Based on the analytical results in the above section, the
nonlinear reciprocity mismatch causes dramatic performance
degradation. In this section, we propose a nonlinear reciprocity
calibration approach for the BS to mitigate the performance
loss due to the nonlinear reciprocity mismatch.

A. Existing Work on Linear Reciprocity Calibration

The reciprocity calibration aims at making the ratio of
downlink and uplink channel equal, i.e.,

cm
hDL,m,k

hUL,m,k
= ci

hDL,i,k

hUL.i,k
, ∀m, i ∈ [1 : M ], k ∈ [1 : K],

(40)
where cm is the calibration coefficient of the m-th antenna at
the BS.

In the massive MIMO system with the linear reciprocity
mismatch, hDL,m,k/hUL,m,k = tm/rm. Hence, (40) can be
further denoted as

cm
tm
rm

= ci
ti
ri
, ∀m, i ∈ [1 : M ]. (41)

From (41), it can be seen that the reciprocity calibration
requires the knowledge of the ratio of tm and rm. In the
conventional reciprocity calibration, fm = tm/rm (m ∈
[1 : M ]) can be estimated by using the OTA training [23],
[25], [26]. The training pilot sequence of the m-th antenna at
the BS can be denoted as xm = [xm[1], · · · , xm[Q]]

T with
E
{
|xm[q]|2

}
= ρc, where Q is the pilot length. Let ym,i

denote the training signal transmitted by the m-th antenna
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and received by the i-th antenna, and let yi,m represent the
opposite direction signal. The received signals can be denoted
as

ym,i =
√
a0ωm,itmrixm + nm,i, (42a)

yi,m =
√
a0ωm,itirmxi + ni,m, (42b)

where ωm,i denotes the wireless propagation channel between
the m-th antenna and the i-th antenna, nm,i and ni,m are
AWGN vector. According to [25], the reciprocity mismatch
factors can be computed by

f̂ = [1,−ȳT1 Ȳ∗2(ȲT
2 Ȳ∗2)−1], (43)

where ȳ1 is the first column of the matrix Ȳ, Ȳ2 consist of
the second column to the last column of Ȳ, and Ȳ ∈ CM×M
is defined as

[Ȳ]m,i =

{∑M
j 6=m |xTmyj,m|2, when m = i,

−yHi,mx∗mxTi ym,i, when m 6= i.
(44)

Then, the linear calibration coefficients can be legitimately
computed by

ĉ =

[
c0

f̂1

, · · · , c0
f̂M

]T
, (45)

where c0 can be any non-zero constant. Finally, during the data
transmission, the precoding matrix for implementing the linear
reciprocity calibration can be given by Wc = 1√

βc
diag(c)W

where βc = tr
{

diag(c)WWHdiag(c∗)
}

.

Remark 4 (Overhead and computational complexity of con-
ventional calibration). During the conventional calibration, the
antennas of BS broadcast Q-length training pilots in turn.
Therefore, the training overhead of conventional calibration
is MQ. For computing the reciprocity mismatch factors,
the asymptotic computational complexity can be given by
O(M3 +QM2). The computational complexity of computing
the calibration coefficients can be given by O(M).

In the massive MIMO system with the nonlinear reci-
procity mismatch, hDL,m,k/hUL,m,k = tm

rm
µ(Asat,m/σx,m) =

µm(σx,m) = ḡm, and (40) can be rewritten as

cmµm(|cm|σx,m) = ciµi(|ci|σx,i), ∀m, i ∈ [1 : M ]. (46)

From the equation, the nonlinear reciprocity calibration re-
quires the knowledge of the function ḡm = µm(σx,m). Since
the reciprocity mismatch coefficients ḡm of the m-th antenna
is a nonlinear function of the average transmit power σx,m,
the calibration coefficients are also related to the power.
Therefore, compared with linear reciprocity calibration, the
nonlinear reciprocity calibration encounters greater challenges
as follows:
• Challenge 1: Since the reciprocity mismatch factor varies

with the transmit power, it is essential to obtain the
relationship ḡm = µm(σx,m) between the nonlinear
reciprocity mismatch factor ḡm and the transmit power
σx,m.

• Challenge 2: From (16), the function of gm and σx,m is
complex. Hence, it is difficult to determine the expression
of the mismatch function ḡm = µm(σx,m).

0 0.5 1 1.5 2

The amplitude of c
m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h

e 
am

p
li

tu
d

e 
o

f 
c

i

Linear Reciprocity Misamtch

Nonlinear Reciprocity Misamtch

Fig. 2. The relationship of the calibration coefficients cm and ci (i 6= m)
∀m, i ∈ [1 : M ]. The function ϕ−1

i (x) denotes the inverse function of
x = ϕi(|ci|) = |ciµi(|ci|σx,m)|, and ϕm(|cm|) = |cmµm(|cm|σx,m)|.

• Challenge 3: As illustrated in Fig. 2, the relationships
between the calibration coefficients are highly nonlinear
so that it is difficult to solve the nonlinear calibration
coefficients.

To overcome these challenges, we propose three techniques
which are the multi-power training pilots, the OTA-polynomial
training approach, and the toward optimal nonlinear calibration
coefficients for the nonlinear reciprocity calibration.

B. Pilots Design for Nonlinear Reciprocity Calibration

According to challenge 1, the reciprocity mismatch is a
nonlinear function of the transmit power. To sample the
nonlinear function versus the transmit power, we propose
multi-power training pilots. Suppose the maximum transmit
power of the m-th antenna is σ2

max,m. The power sequences
of the calibration signals can be denoted as {ρc,1, · · · , ρc,N},
where ρc,n = (nσmax,m/N)2 (n ∈ [1 : N ]). The calibration
signal sequence of m-th antenna at the n-th power point can
be denoted as {x(n)

m [q]}q∈[1:Q], where E
{
|x(n)
m [q]|2

}
= ρc,n,

∀q ∈ [1 : Q].

C. Nonlinear Reciprocity Mismatch Factors Estimation

According to Challenge 2, it is difficult to determine
µm(σx,m) in practice. Inspired by applying polynomials to
characterize the HPA, we employ the polynomials to approx-
imate the function gm = tmµ(Asat,m/σx,m) during the reci-
procity calibration. Based on [32], the function µm(σx,m) =
gm/rm can be expressed by a Π-order2 polynomial function
as

µm(σx,m) =
gm
rm

=

Π∑
$=0

τm,$ψ$(σx,m), (47)

2The optimal polynomial order Π depends on the transmit power ρt,
the equivalent noise power σ̄2

z , and the property of the nonlinear function.
According to [37], the optimal order can be chose by minimizing the squared
error, i.e., Π0 = arg minΠ

∑N
n=1

∑Q
q=1

∑M
m,i(y

(n)
m,i[q] − y

(n)
Π,m,i[q])

2,

where y(n)
Π,m,i[q] denotes the results via polynomial fitting.
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where τm,$ is the polynomial coefficient, and ψ$(σx,m) is
the orthogonal polynomial given by

ψ$(σx,m) =

$∑
l=0

(−1)l+$+2 ($ + l + 2)!

l!(l + 1)!($ − l)!
σlx,m. (48)

Then, we propose an OTA training approach based the multi-
power pilots to estimate the polynomial coefficient τm,$.

Let y(n)
m,i[q] denote the signal received by the i-th antenna.

y
(n)
i,m[q] denotes the received signal by the m-th antenna. They

are can be given by

y
(n)
m,i[q] =

√
a0riωm,igmx

(n)
m [q] + z̃

(n)
m,i[q], (49a)

y
(n)
i,m[q] =

√
a0rmωi,mgix

(n)
i [q] + z̃

(n)
i,m[q], (49b)

where z̃(n)
m,i[q] denotes the equivalent noise consisting of the

nonlinear distortion and the AWGN at the i-th antenna, and
z̃

(n)
i,m[q] is the equivalent noise at the m-th antenna. Then, the

polynomial coefficients vector τ = [τ1,0, τ1,1, · · · , τM,Π]T can
be computed by the LS approach as follows.

Proposition 4 (Estimation of the polynomial coefficients). As-
suming that the first polynomial coefficient of the first antenna
is a constant, e.g., τ1,0 = 1, the polynomial coefficients can
be computed by

τ̂ =
[
1,−ψ̄T1 Ψ∗2

(
ΨT

2 Ψ∗2
)−1
]T
, (50)

where ψ̄1 is the first column of Ψ, Ψ2 consists of the second
to the MΠ-th column of Ψ, and Ψ consists of the received
training signals and denoted as (54).

Proof: Based on (50), since the wireless propagation
channel is reciprocal, i.e., hm,i = hi,m, the equation can be
denoted as gm

rm
x

(n)
m [q]y

(n)
i,m[q] = gi

ri
x

(n)
i [q]y

(n)
m,i[q] by ignoring

the noise. By substituting (47) into the equation, it can be
further denoted as

ȳ
(n)
m,i[q]

Π∑
$=0

τi,$ψ$(ρc,n)− ȳ(n)
i,m[q]

Π∑
$=0

τm,$ψ$(ρc,n) = 0,

(51)
where ȳ(n)

m,i[q] = y
(n)
m,i[q]x

(n)
i [q] and y

(n)
i,m[q] = ȳ

(n)
i,m[q]x

(n)
m [q].

For all n ∈ [1 : N ] and q ∈ [1 : Q], (51) holds. Thus, by
gathering all the signals and ignoring the noise, the equation
can be further denoted as

Ψm,iτ i −Ψi,mτm = 0, (52)

where τ i = [τi,1, · · · , τi,Π]T , τm = [τm,1, · · · , τm,Π]T ,
Ψm,i = [Ψ

(1)
m,i, · · · ,Ψ

(N)
m,i ]

T , Ψi,m =

[Ψ
(1)
i,m, · · · ,Ψ

(N)
i,m ]T , Ψ

(n)
m,i = [ȳ

(n)
m,i[1]ψn, · · · , ȳ

(n)
m,i[Q]ψn],

Ψ
(n)
i,m = [ȳ

(n)
i,m[1]ψn, · · · , ȳ

(n)
i,m[Q]ψn], and ψn =

[ψ0(ρc,n), · · · , ψΠ(ρc,n)]T . By stacking the equation of
all pairs of antennas into the matrix form, the overall equation
can be denoted as

Ψτ = 0, (53)

where τ =
[
τT1 , · · · , τTM

]T
, and Ψ is defined as

Ψ =


Ψ1,2 −Ψ2,1 0 · · ·
Ψ1,3 0 −Ψ3,1 · · ·

...
...

...
. . .

0 Ψ2,3 −Ψ3,2 · · ·
...

...
...

. . .

 , (54)

To exclude the trivial all-zero solution to (53), τ1,0 is assumed
to be known previously and set to 1. Then, (53) can be further
written as

Ψ2τ c + ψ̄1 = 0, (55)

where τ c consists of the second to the Π-th row of τ , ψ̄1 is
the first column of Ψ and Ψ2 consists of the second to the
MΠ-th column of Ψ. (55) can be solved by the least square
algorithm and its solution can be given by

τ̂ c = −(ΨH
2 Ψ2)−1ΨH

2 ψ̄1. (56)

As a result, the coefficient vector τ = [τ1, τ̂
T
c ]T can be

denoted as (50).

D. Computing the Reciprocity Calibration Coefficients

In terms of (46), only the amplitude of the calibration
coefficients changes the output of HPA. Hence, the amplitude
and phase of the calibration coefficient can be computed
independently. By substituting (47) into (46), the amplitude
and phase should, respectively, satisfy

|cm|µ̄m(|cm|) = |cm|µ̄i(|ci|), (57)
∠cm + ∠µm(|cm|) = ∠ci + ∠µi(|ci|), (58)

where µ̄m(|cm|) is the amplitude of µm(|cm|σx,m) and can
be denoted as

µ̄m(|cm|) =
√
µ2

r,m(|cm|σx,m) + µ2
i,m(|cm|σx,m). (59)

In (59), µr,m(σx,m) =
∑Π
$=0 τ̂r,m,$ψ$(σx,m), µi,m(σx,m) =∑Π

$=0 τ̂i,m,$ψ$(σx,m), where τ̂r,m,$ is the real part of τ̂m,$,
and τ̂i,m,$ denotes the imaginary part of τ̂m,$. Therefore,
the amplitude and phase of calibration coefficients can be
computed by solving (57) and (58), respectively.

As mentioned by Challenge 3, it is difficult to solve the
calibration coefficients from (57). We can find that there
are infinitely many solutions to (57), even including an all-
zero solution which can make the system fail. Due to the
complex expression of the function µm(x), it is difficult to find
the calibration coefficients exactly satisfying the total power
constraint and the maximum power constraint based on (57).
To address the issues, an optimization problem is formulated to
solve the equations efficiently and find the optimal calibration
coefficients. The problem seeks to maximize the downlink
achievable rate with maximum transmit power constraints,
i.e.,

∑M
m=1 |cm|2σ2

x,m ≤ ρt and |cm|σx,m ≤ σmax,m, and
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reciprocity constraints in (57). Thus, the problem can be
formulated as

P1 : max
|cm|

γk

s.t. C1 :

M∑
m=1

|cm|2σ2
x,m ≤ ρt,

C2 : ϕm(|cm|) = ϕi(|ci|),
C3 : 0 ≤ |cm| ≤ cmax,m,

(60)

where cmax,m = σmax,m/σx,m, and ϕm(|cm|) =
|cm|µ̄m(|cm|).

Since both the objective and C2 are non-convex, P1 is
non-convex and difficult to solve. To solve P1 efficiently, we
reformulate P1 as an equivalent convex problem as follows.

Proposition 5 (Equivalent convex optimization). By substitut-
ing (41) into the objective and relaxing the equation constraint,
P1 can transformed into an equivalent convex problem as

P2 : max
|cm|,g0

g0

s.t. C1, C3,
C4 : 0 ≤ g0 ≤ ϕm(|cm|), ∀m ∈ [1 : M ].

(61)

Proof: From the theoretical analysis, the distortion is
negligible in practical systems and can be regarded as the
equivalent noise. By substituting (41) into the SINDR in
(26) and focusing on the nonlinear reciprocity mismatch at
the BS side, the SINDR can be further denoted as γk =
(M − K)ρta0g

2
0 |tr {R∗} |2/(tr

{
Φ−2

}
Mtr {RR∗} σ̄2

n),
where g0 = ϕm(|cm|). Since the quadratic function is
monotonically increasing when g0 ≥ 0, the objective of P1

can be replaced by g0 and the constraint C2 can be rewritten
as g0 = ϕm(|cm|), ∀m ∈ [1 : M ].

Since ϕm(|cm|) is a nonlinear function of |cm|, the equa-
tion constraint C2 is nonconvex. Thanks to the concavity of
ϕm(|cm|), the constraint C2 becomes convex by relaxing the
equation, i.e., g0 ≤ ϕm(|cm|). Hence, P1 can be reformulated
as P2 as (61). Because both the objective function and the
function g0−ϕm(|cm|) are monotonically increasing with g0,
the problem P2 after relaxation is equivalent to the primal
problem P1 [38].

As P2 is a convex optimization problem, it has a unique
maximum. The optimal solution can be obtained by some math
tools, e.g., the interior-point method [38], but the performance
of such method decreases rapidly as the antenna number M
increases. Inspired by the sequential linear programming (SLP)
[39], we propose an efficient algorithm to solve P2.

By employing the Taylor expansion centered at |cl−1
m |, the

nonlinear function ϕm(|cm|) can be approximated as

ϕm(|cm|) ≈ ϕ̃m(|cl−1
m |, |cm|)

= ϕm(|cl−1
m |) + ϕ′m(|cl−1

m |)(|cm| − |cl−1
m |),

(62)

where
{
|cl−1
m |

}
m∈[1:M ]

is the solution to the (l−1)-th iteration
optimization. Then, the subproblem of the l-th iteration can be

Algorithm 1 SLP for computing the calibration coefficients.
Require: |c0m| = 0 ∀m ∈ [1 : M ], ε.
Ensure: The nonlinear reciprocity calibration coefficients
{c̄m}m∈[1:M ].

1: repeat
2: Compute ϕm(|cl−1

m |), ϕ′m(|cl−1
m |), and χl−1

m , ∀m ∈ [1 :
M ].

3: Solve the equation
∑M
m=1

[
(g0−χl−1

m )σx,m

ϕ′m(|cl−1
m |)

]2
= ρt by

the quadratic formula.
4: Set gl0 = min

{
ϕ̃m(|cl−1

m |, cmax,m), ĝ0

}
.

5: Set c̄lm =
gl0−χ

l−1
m

ϕ′m(|cl−1
m |)

, ∀m ∈ [1 : M ].

6: Step size rule: Set ∆clm = c̄lm − |cl−1
m | and

choose a % ∈ (0, 1). Let ς(l) be the largest ele-
ment in

{
%j
}
j=0,1,··· satisfying minm

{
ϕm(|cl−1

m |)
}
≤

minm
{
ϕm(|cl−1

m |+ ς(l)∆clm)
}

and the inequalities de-
noted in (65).

7: Set |clm| = |cl−1
m |+ ς(l)∆clm, ∀m ∈ [1 : M ].

8: until 1
M

∑M
m=1

∣∣|clm| − |cl−1
m |

∣∣ < ε.

denoted as

P3 : max
fm,g0

g0

s.t. C1, C3,
C5 : 0 ≤ g0 ≤ ϕ̃m(|cl−1

m |, |cm|), ∀m ∈ [1 : M ].

(63)

P3 is a linear programming and the solution can be given as
follows.

Proposition 6 (Solution to the l-th subproblem). The problem
P3 is convex and has a unique solution as{

c̄lm =
gl0−χ

l−1
m

ϕ′m(|cl−1
m |)

,

gl0 = min
{
ϕ̃m(|cl−1

m |, cmax,m), ĝ0

}
,

(64)

where ĝ0 is the solution to the quadratic equation∑M
m=1

[
(g0−χl−1

m )σx,m

ϕ′m(|cl−1
m |)

]2
= ρt and can be solved by the

quadratic formula, and χl−1
m = ϕm(|cl−1

m |)−ϕ̄′m(|cl−1
m |)|cl−1

m |.

Proof: The solution to P3 can be solved by using the
Lagrange method and Karush-Kuhn-Tucker conditions [38].

In (64), to ensure that c̄lm is non-negative, gl0 should be
larger than maxm

{
χl−1
m

}
, i.e.,

min
m

{
ϕ̃m(|cl−1

m |, cmax,m)
}
> max

m

{
χl−1
m

}
,

M∑
m=1

[
maxm

{
χl−1
m

}
− χl−1

m

ϕ′m(|cl−1
m |)σ−1

x,m

]2

< ρt.
(65)

Therefore, we propose a simple line search approach to choose
a step size ς ∈ (0, 1] ensuring that the inequalities in (65) are
true and minm

{
ϕm(|clm|)

}
is non-decreasing. Assume that

the {|cl−1
m |}m∈[1:M ] in the (l − 1)-th iteration can guarantee

the inequalities in (65). The step size α can be the largest
element in

{
%j
}
j=0,1,··· satisfying minm

{
ϕm(|cl−1

m |)
}
≤

minm
{
ϕm(|clm|)

}
and the inequalities in (65), where % ∈

(0, 1), and |clm| = (1 − ς)|cl−1
m | + ςc̄lm. Finally, the SLP
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Algorithm 2 Nonlinear reciprocity calibration
• Step 1 (Transmit training pilots): The antenna m

transmits the training pilots
{
x

(n)
m [1], · · · , x(n)

m [Q]
}

, and

antenna i (i 6= m) receives the training signals y(n)
m,i[q],

∀m, i ∈ [1 : M ], n ∈ [1 : N ], q ∈ [1 : Q].
• Step 2 (Estimate the polynomial coefficients): The

baseband processor gathers all the received training sig-
nals and formulates the matrix Ψ denoted in (54). Then,
the polynomial coefficients can be estimated by (50).

• Step 3 (Compute the nonlinear calibration coeffi-
cients): The baseband processor formulates the amplitude
function µ̄(σx,m) denoted in (59). Then, the amplitude of
the calibration coefficients can be computed by solving
the optimization problem P2 with Algorithm 1. The phase
of the calibration coefficients can be computed by (66).

approach for computing the nonlinear calibration coefficients
is summarized as Algorithm 1.

Remark 5 (Convergence analysis). Since P2 equivalently
maximizes minm {ϕm(|cm|)} which is non-decreasing during
the iterations and is a bounded function, (c̄1, · · · , c̄M ) is a
limit point of the iterations in Algorithm 1, which yields
liml→∞minm

{
ϕm(|clm|)

}
= minm {ϕm(c̄m)}. According to

(62), the limit point (c̄1, · · · , c̄M ) is likewise the stationary
point of P2.

Further, the phases of calibration coefficients can be com-
puted by solving the equations denoted in (58). Since the
variables are more than the equations, the equations are
underdetermined and have infinitely many solutions. Since
the phases of calibration coefficients unrelated to the average
transmit power, any particular solution to the equations can
make the system work well. Therefore, we can give a particular
solution denoted as

∠cm = −∠µn(|cm|σx,m)

= − arctan

(
µr,m(|cm|σx,m)

µi,m(|cm|σx,m)

)
, ∀m ∈ [1 : M ].

(66)

Thus, the precoding matrix of ZF for implementing the
nonlinear reciprocity calibration can be denoted as Wc =
diag(c)W.

E. Calibration Process, Overhead and Complexity Analysis

The overall process of the nonlinear reciprocity calibration
can be described as Algorithm 2. According to Algorithm 2,
it can be seen that the overhead is caused by transmitting
the training signals, and the computational complexity mainly
results from computing the polynomial coefficients and the
nonlinear calibration coefficients, respectively. The training
overhead is caused by learning the system coefficients and can
be defined as the number of transmitting the training pilots. As
for the computational complexity, we focus on the complexity
resulting from the multiplication. Then, the training overhead
and the computational complexity for the polynomial nonlin-
ear reciprocity calibration are given as follows.

Remark 6 (Overhead and computational complexity). For
the polynomial nonlinear reciprocity calibration, the total
training overhead is MNQ. The computational complexity
of computing the polynomial coefficients can be given by
O(M3Π3 +M2Q2N2Π) and the computational complexity of
computing calibration coefficients by Algorithm 1 is O(MΠ).

F. Non-coherent OTA-polynomial Training

In Section IV-C, the channel remains constant during the
whole training process, which may be invalid if the number
of antennas at the BS is very large. To cope with this issue, we
extend the nonlinear mismatch factors estimation to the non-
coherent nonlinear mismatch factors estimation [26], i.e., the
non-coherent OTA-polynomial training. In the non-coherent
training, only a part of antennas participate in the training
process during each coherent slot.

Let M = {1, 2, · · · ,M} denote the index set of all the
antennas. Suppose that the number of coherent slots used
for training is Tc. In each coherent slot, only a subset of
antennas participate in the current training process. Hence,
the antennas are divided into Tc groups M1, · · · ,MTc based
on two rules. First, each antenna should participate in the
training at least once, i.e., ∪Tclc=1Mlc = M. Second, the
calibration in the different groups should be correlated, e.g.,
the adjacent two groups contains at least one same antenna,
i.e., Mlc ∩Mlc+1 6= ∅ (lc ∈ [1 : Tc − 1]).

During the lc-th coherent slot, the antennas in the subset
Mlc (Mlc ⊆ M) broadcast training signal in turn. The
training signals between antenna m (m ∈ Mlc) and antenna
i (i ∈Mlc) can be denoted as

y
(n)
m,i,lc

[q] =
√
a0riω

lc
m,igmx

(n)
m,lc

[q] + z̃
(n)
m,i,lc

[q], (67a)

y
(n)
i,m,lc

[q] =
√
a0rmω

lc
i,mgmx

(n)
i,lc

[q] + z̃
(n)
i,m,lc

[q], (67b)

where ωlcm,i and ωlci,m denotes the wireless channel between the
m-th antenna and the i-th antenna in the subsetMtc during the
coherent slot lc. Same as (51)-(53), by stacking these equations
into matrix form with i, j ∈Mlc , we can obtain Ψlcτ = Ñlc ,
where Ψlc stacks the received training signal at the lc coherent
slot and has the same structure with Ψ denoted as (54). Same
as (50), the polynomial coefficients can be computed by

τ̂ = [1,−φ̄Tnc,1Ψ
∗
nc,2(ΨT

nc,2Ψ
∗
nc,2)−1]T , (68)

where ψ̄nc,1 is the first column of Ψnc, Ψnc,2 consists
of the second to the MΠ-th columns of Ψnc, Ψnc =
[ΨT

1 , · · · ,ΨT
Tc ]

T .

Remark 7 (Overhead of non-coherent training). To accumu-
late same M(M − 1)QN training signals as the coherent
training, the non-coherent training overhead in each coherent
slot can approximated as MQN/

√
Tc, and the whole train-

ing overhead of Tc slots is
√
TcMQN . Therefore, the non-

coherent training relaxes the requirement of the coherent time
at the cost of increasing the number of coherent slots and the
overall training overhead. Further, since the the overall calibra-
tion overhead of the coherent training process is smaller, the
coherent training is worth being adopted unless the coherence
time cannot support it.
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Fig. 3. Average achievable rate versus the downlink transmit SNR ρd.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulation results for the multi-
user massive MIMO system in the presence of the nonlinear
reciprocity mismatch to verify the analytical results and to
show the performance of the proposed calibration approach.
For easy presentation, RC denotes reciprocity calibration, and
NRC represents nonlinear reciprocity calibration.

The system parameters for simulations are set as follows.
The cell radius is normalized to 1 and the minimum distance
between BS and UE is set to 0.01 [12]. The BS is equipped
with M = 256 antennas and is deployed at the center of the
cell. There are K = 20 single-antenna UEs served by the
BS simultaneously. The large-scale path loss between the k-
th UE and BS is modeled as φk =

√
ζd−ξh,k, where ζ is the

path gain at the reference distance of the far-field area, dh,k

is the distance between the BS and UE k, and ξ is the path
loss exponent [27]. In the simulation, ζ is set to −20 dB and
ξ equals to 3.7. We use ρd to denote the downlink transmit
SNR, i.e. ρd = ρt/σ

2
n, and the variance σ2

n of AWGN is set
to 1 during the simulation. The small amplification gain a0

is equal to 20 dB. Further, both the IBO and the mismatch
coefficients are differently set in each simulation.

A. Impact of Nonlinear Reciprocity Mismatch

Fig. 3 illustrates the downlink average achievable rate as
a function of the average transmit SNR ρd for different
values of IBO, δ2, and θ. am, |tm|, |rm|, |uk|, and |vk|
are distributed as {ln am, ln |tm|, ln |rm|, ln |uk|, ln |vk|} ∼
N (0, δ2), and ∠tm, ∠rm, ∠uk, and ∠vk are distributed as
{∠tm,∠rm,∠uk,∠vk} ∼ U(−θ, θ). From the figure, it can be
seen that the theoretical results are closed to the simulations,
which verifies the theoretical results. The achievable rate
increases with the transmit SNR and approaches an upper
limit when the SNR is large. Further, as the IBO increases
or the mismatch parameters decrease, the upper limit of the
achievable rate increases. This implies that the rate limitation
is caused by both the limitation of the HPA and the reciprocity
mismatch, which is consistent with analytical results.
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The impacts of the amplitude and phase reciprocity mis-
match on the average achievable rate degradation are shown
in Fig. 4a and Fig. 4b, respectively, where the IBO is set
to 10 dB. From the figures, it can be seen that both the
amplitude mismatch at the BS side and the UE side degrade
the achievable rate, and only the phase mismatch at the BS
side can degrade the achievable rate. Further, the performance
degradation caused by the mismatch at the BS side is much
larger than that at the UE side and increases with the downlink
transmit SNR ρd. This implies that the reciprocity calibration
at the BS side is very essential for the TDD multi-user massive
MIMO system, especially at the high SNR regime. Besides,
the dashed curves are closed to the solid curves when the
mismatch parameters are small. This is because when the
mismatch is serious, the SINDR is not large enough, and
the approximation log(1 + SINDR) with log(SINDR) is not
accurate.

Further, the average achievable rate versus the IBO of the
BS is demonstrated in Fig. 5 with the transmit SNR ρd set to
−5 dB and 5 dB. As seen from the figure, the achievable rate
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Fig. 6. Average achievable rate after RC versus the downlink transmit SNR
ρd.

increases when IBO increases. In the small IBO region, the
achievable rates are almost the same for the different system
coefficients. This indicates that the poor amplification ability
of the HPA greatly limits system performance. In the large
IBO region, the achievable rate approaches an upper limit. As
the transmit SNR ρd increases or the mismatch parameters
decrease, the upper limit of the achievable rate increases,
which implies that the transmit power and the reciprocity
mismatch limit the system performance. Further, the impact
of the reciprocity mismatch on the achievable rate becomes
greater when both the transmit SNR and IBO are large. These
results indicate that the nonlinearity of HPAs intensifies the
reciprocity mismatch, which is consistent with the theoretical
results in (39).

B. Performance of Nonlinear Reciprocity Calibration

Fig. 6 demonstrates the average achievable rate versus
the transmit SNR ρd with different calibration approaches.
Note that the perfect NRC is the performance benchmark of
the nonlinear reciprocity calibration. In the simulation, the
polynomial order is set to Π = 5 and the IBO is 10 dB.
The training pilot length N and Q are set to 6 and 10,
respectively. From the figure, it can be seen that the achievable
rate increases with the transmit SNR. In the small SNR regime,
the system with any reciprocity calibration approach almost
has the same performance as the system without the reciprocity
calibration. In the high SNR regime, the achievable rate with
the nonlinear reciprocity calibration is much larger than both
the rate without calibration and the rate with conventional
calibration. The results imply that the reciprocity calibration
is more essential to the TDD system working at the high
SNR regime. The performance of the polynomial nonlinear
reciprocity calibration is very closed to the perfect nonlinear
reciprocity calibration. When the transmit SNR is large, the
performance of the polynomial NRC is less than the perfect
NRC. This performance loss is caused by the calibration error
due to the OTA-polynomial training.
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The average achievable rate after the reciprocity calibration
versus the IBO is illustrated in Fig. 7 with the SNR ρd set to
10 dB and 15 dB. The mismatch coefficients

{
δ2, θ

}
are set

to {0.05, π/6}. From the figure, the average achievable rate
after the reciprocity calibration increases with the IBO. In the
small IBO regime, the achievable rate of the polynomial NRC
is smaller than the perfect NRC, and it gradually approaches
the rate of the perfect NRC. At the large IBO regime, the
polynomial NRC has the same performance as the perfect
NRC. This is because the estimation error of the polynomial
coefficients decreases with the increase of IBO. Further, the
conventional calibration performs poorly when IBO is small,
and it performs better as the IBO increases. At the very large
IBO regime, the performance of the conventional calibration
approaches the NRC. This is because the nonlinearity of HPA
disappears when IBO is very large, and the TDD system
suffers the linear reciprocity mismatch.

The relationship between the achievable rate and the poly-
nomial order is shown in Fig. 8. The IBO is set to 5 dB,
and the mismatch parameters

{
δ2, θ

}
are set to {0.1, π/6}.
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The order Π = 0 denotes the conventional RC approach. The
figure shows that when Q is small, as the polynomial order
increases, the achievable rate first increases and then decreases.
This is because the received training signal is noisy when Q
is small. The high-order polynomial fitting by using the noisy
data suffers over-fitting, which makes the learned polynomial
function perfectly fit the noisy training data, but fail to fit
the actual function. When the pilot length Q is large, the
performance of the polynomial NRC always approaches the
perfect NRC as the polynomial order is large. This is because
the impact of the noise on the polynomial fitting gradually
decreases and even vanishes, as the length of the training
pilots increases. Consequently, to reduce the computational
complexity and achieve a good performance of the polynomial
nonlinear reciprocity calibration, the polynomial order should
not be very large.

Fig. 9 shows the average achievable rate versus the pilot
length. The IBO is set 10 dB and polynomial order Π is set
to 5. In the non-coherent NRC, to gathering M(M − 1)QN
training signals, the antennas are divided into M(M − 1)/2
groups, and each groups contains two antennas. From the
figure, it can be seen that the achievable rate increases with the
pilot length Q, and gradually approaches to the performance
of the perfect NRC. This is because the estimation errors of
the polynomial coefficients decreases with the pilot length Q.
Further, we can also observe that the achievable rate of the
non-coherent NRC is same as that of the coherent polynomial
NRC which requires less training overhead.

Finally, the computational complexity of the conventional
RC and the polynomial NRC versus the antenna number is
illustrated in Fig. 10. During the simulation, N is set to
Π + 1. Fig. 10a compares the complexity of the conven-
tional RC training and the polynomial NRC training. We find
that the polynomial NRC training takes more time than the
conventional RC training. Then, in Fig. 10b, we compare
the computational complexity of computing the calibration
coefficients. From Fig. 10b, it can be seen that the conventional
linear RC is much faster than the NRC. Further, the SLP
algorithm is faster than the interior point algorithm, and the
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Fig. 10. Complexity of the conventional NRC and the polynomial NRC versus
the antenna number.

advantages of the SLP algorithm becomes more obvious when
the antennas number increases.

VI. CONCLUSIONS

In this paper, we have studied the nonlinear reciprocity
mismatch of the multi-user massive MIMO system, including
the impact analysis and the nonlinear reciprocity calibration.
By modeling the transmit RF gain as a nonlinear function
of the transmit power, we derived the closed-form expression
of the ergodic achievable rate with the nonlinear reciprocity
mismatch. Based on the closed-form achievable rate, the
performance loss caused by the nonlinear mismatch at the
BS side and the UE side was presented, respectively. The
analytical results revealed that the impact of the mismatch
at the BS side was much severer than that at the UE side.
To further analyze the impact of the nonlinear mismatch at
the BS side, we considered a special case where the IBO
was larger than zero, which demonstrated that the nonlinearity
exacerbated the reciprocity mismatch. Then, we proposed a
novel nonlinear reciprocity calibration approach for the BS.
During the calibration, the nonlinear relationship between the
mismatch factor and the transmit power was approximated
by the polynomial fitting, and the polynomial coefficients
were estimated by the OTA training. Finally, to compute the
nonlinear calibration coefficients efficiently, we formulated an
auxiliary optimization problem and proposed a fast algorithm
to solve it. Due to the low complexity of the algorithm, the
nonlinear NRC was easy to implement in the actual system.

APPENDIX A
PROOF OF PROPOSITION 1

According to (7), the closed-form expression of the normal-
ization scalar βZF of the ZF precoding scheme can be given
by

βZF = E
{

tr
[(

HT
ULH∗UL

)−1
]}

(a)
=

Mtr
{

(BΦ2B∗)−1
}

tr {RR∗} (M −K)
,

(69)
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where the step (a) is because (HT
ULH∗UL)−1 obeys the

inverse-Wishart distribution denoted as (HT
ULH∗UL)−1 ∼

W−1(M(BΦ2B∗tr {RR∗})−1,K,M).
According to [24, Eq. (14)] and [27, Eq. (40)], we further

approximate (H∗ULHT
UL)−1 into a diagonal matrix as

(HT
ULH∗UL)−1 ≈ 1

tr {RR∗}
diag

(
1

|b1|2φ2
1

, · · · , 1

|bK |2φ2
K

)
.

(70)
Then, the transmitted signal xb,m of the m-th antenna with

the ZF precoding can be rewritten as

xb,m = [W]m·s =
r∗m

tr {RR∗}
√
βZF

K∑
i=1

h∗m,isi

biφk
. (71)

The variance of xb,m can be derived as

σ2
x,m = E

{
|xb,m|2

}
=

E
{
|
∑K
i=1 h

∗
m,isib

−1
i φ−1

i |2
}
|rm|2

(tr {RR∗})2βZF

=
(M −K)ρt|rm|2

∑K
i=1 |hm,i|2|biφi|−2

Mtr {RR∗}
∑K
i=1 |biφi|−2

(b)
=
|rm|2ρt

tr {RR∗}
,

(72)

where (b) holds due to LLN. By substituting (72) into µ(x),
the closed-form expression of the linear scalar gZF,m of ZF
can be denoted as

gZF,m = tmµ

(
AAst,m

√
tr {RR∗}√
|rm|2ρt

)
. (73)

The closed-form expression of the variance σ2
d,m of the

nonlinear distortion dm of ZF can be denoted as

σ2
ZF,m = |tm|2λm

(√
|rm|2ρt

tr {RR∗}

)
. (74)

The effective downlink channel gain Heq = HDLW for ZF
can be denoted as

Heq =
1√
βZF

HDLH∗UL(HT
ULH∗UL)−1

=
1√
βZF

UH̄R−1GZFH̄H(H̄H̄H)−1B−1,
(75)

where H̄ = HR, and GZF = diag(gZF,1, · · · , gZF,M ). To
accurately derive the SINDR, we further denoted R−1GZF =
αIM + ∆rg, where α is the arithmetic mean of gm/rm,
i.e., α = 1

M

∑M
m=1 gZF,m/rm, ∆ = diag(∆1, · · · ,∆M ), the

arithmetic mean of ∆m is zero and the variance of ∆m is
equal to the variance of gZF,m. Then, the effective downlink
channel can be further given by

Heq =
1√
βZF

U
[
H̄∆rgH̄H(H̄H̄H)−1 + α

]
B−1

=
1√
βZF

U

[
1

tr {RR∗}
H̄∆rgH̄H

·diag

(
1

φ2
1

, · · · , 1

φ2
K

)
+ αIK

]
B−1,

(76)

In light of (76), the statistical effective channel gain
E {heq,k,k} can be derived as

E {heq,k,k} =
uk√
βZFbk

E
{

h̄k∆rgh̄Hk
tr {RR∗}φ2

k

+ α

}
=
uktr {GZFR∗ − αRR∗}√

βZFbktr {RR∗}
+

αuk√
βZFbk

=
uktr {GZFR∗}√
βZFbktr {RR∗}

.

(77)

Then, the power of the effective signal received at the k-th
UE can be given by

ΥES
ZF,k = a0ρt|E {heq,k,k} |2

=
a0ρt(M −K)|uktr {GZFR∗} |2

M |bk|2tr
{
(BΦ2B∗)−1

}
tr {RR∗}

.
(78)

The second moment of the statistical effective channel gain
of ZF can be denoted as

E
{
|heq,k,k|2

}
=
|uk|2

βZF|bk|2
E

{∣∣∣∣ h̄k∆rgh̄Hk
tr {RR∗}φ2

k

+ α

∣∣∣∣2
}

=
|uk|2

βZF|bk|2

[
E
{
|h̄k∆rgh̄Hk |2

}
(tr {RR∗})2φ4

k

+
E
{
h̄k∆rgh̄Hk

}
tr {RR∗}φ2

k

+
E
{
h̄k∆

∗
rgh̄Hk

}
tr {RR∗}φ2

k

+ |α|2
]

=
|uk|2

βZF|bk|2

[
tr {(GZF − αR)RR∗(G∗ZF − αR∗)}

(tr {RR∗})2

+
tr {(GZF − αR)R∗} tr {(G∗ZF − αR∗)R}

(tr {RR∗})2

+
2Re {tr[(G∗ZF − αR∗)R]}

tr {RR∗}
+ |α|2

]
=
|uk|2tr {(GZF − αR)(G∗ZF − αR∗)}

MβZF|bk|2tr {RR∗}

+
|uktr {GZFR∗} |2

MβZF|bk|2(tr {RR∗})2
.

(79)

Hence, the power of the self-interference can be given by

Υ SI
ZF,k = a0ρtVar {heq,k,k}

= a0ρt[E
{
|heq,k,k|2

}
− |E {heq,k,k} |2]

=
a0ρt|uk|2tr {(GZF − αR)(G∗ZF − αR∗)}

(M −K)−1M2|bk|2tr {(BΦ2B∗)−1}
.

(80)

Further, the power of the multi-user interference of ZF can
be derived as

ΥMUI
ZF,k = a0ρt

K∑
i 6=k

E
{
|heq,k,i|2

}
=
a0ρt|uk|2

βZF

K∑
i6=k

E

{∣∣∣∣ h̄k∆rgh̄Hi
tr {RR∗} biφ2

i

∣∣∣∣2
}

=

K∑
i 6=k

a0ρt|uk|2φ2
ktr {(GZF − αR)(GZF − αR)∗}

(M −K)−1M2|u−1
k bi|2φ2

i tr {(BΦ2B∗)−1}
.

(81)
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Finally, the power of the nonlinear distortion can be evalu-
ated as

ΥNLI
ZF,k = a0|uk|2φ2

kE
{
hkΣZFhH

}
= a0|uk|2φ2

ktr {ΣZF} ,
(82)

where ΣZF = diag(σ2
ZF,1, · · · , σ2

ZF,M ).

APPENDIX B
PROOF OF PROPOSITION 3

As the HPA works with the large IBO state, the average
power of the input signal is less than the saturation level, i.e.,
σ2
x,m

A2
sat,m

< 1. Hence, we use Taylor series centered at ε to
approximate the function f(x) = µ(1/x), where ε is a very
small positive constant. By utilizing the Taylor expansion, the
function f(x) denoted as

fε (x) = f(ε)− f ′(ε)(x− ε) +
f ′′(ε)

2
(x− ε)2

+
f ′′′(ε)

6
(x− ε)3 +O((x− ε)3).

(83)

When ε approaches to 0, f(x) can be given by

f0(x) = lim
ε→0

f(x) ≈ 1− x2 +O(x3). (84)

By substituting σ2
x,m denoted in (72) into f0(x), gZF,m can

be approximated as

gZF,m = tmµ

(
AAst,m

√
tr {RR∗}√
|rm|2ρt

)

≈ tm

(
1−
|rm|2ρtA−2

sat,m

tr {RR∗}

)
.

(85)

Similarly, by exploiting the Taylor expansion of λm(1/x),
the variance of the nonlinear distortion can be approximated
as

σ2
ZF,m ≈

|rm|6ρ3
tA
−6
sat,m

2(tr {RR∗})3
. (86)

By substituting (85) into (27), the power of effective signal
can be further given by

ῩES
ZF,k = a0ρt

∣∣∣∣∑M
m=1 tmr

∗
m

(
1− |rm|

2ρtA
−2
sat,m

tr{RR∗}

)∣∣∣∣2
(M −K)−1Mtr {Φ−2}

∑M
m=1 |rm|2

(a)
= a0ρt

(M −K)|E {tmr∗m} |2

tr {Φ−2}E {|rm|2}

(
1−

E
{
|am|−2

}
Mρ−1

t A2
sat

)2

(b)
≈ a0ρt

(M −K)|E {tmr∗m} |2

tr {Φ−2}E {|rm|2}

(
1−

2E
{
|am|−2

}
Mρ−1

t A2
sat

)
,

(87)

where (a) holds due to LLN, and (c) is conditioned on ignor-
ing the high-order infinitesimality of ρt/(MAsat). Substituting

(85) into (28) and (29), the sum of self-interference and multi-
user interference can be further denoted as

Ῡ SI
ZF,k = a0ρt

M −K
M2tr {Φ−2}

M∑
m=1

|gZF,m − αrm|2

= a0ρt
M −K

M2tr {Φ−2}

M∑
m=1

[
|gZF,m|2 + |αrm|2

−2Re {gZF,mα
∗r∗m}]

(c)
=
a0ρt(M −K)

Mtr {Φ−2}

[
E
{
|tm|2

}
+

∣∣∣∣E{ tmrm
}∣∣∣∣2 E{|rm|2}

−2Re

(
E
{
tm
rm

}
E {t∗mrm}

)](
1−

2ρtE
{
a−2
m

}
MA2

sat

)
,

(88)

where (c) holds due to LLN and ignoring the high-order
infinitesimality of ρt/(MAsat). Similarly, the power of multi-
user interference can be rewritten as

ΥMUI
ZF,k =

a0ρt(M −K)φ2
k

∑K
i 6=k φ

−2
i

Mtr {Φ−2}
[
E
{
|tm|2

}
− 2Re

(
E
{
tm
rm

}
E {t∗mrm}

)
+

∣∣∣∣E{ tmrm
}∣∣∣∣2 E{|rm|2}

](
1−

2ρtE
{
a−2
m

}
MA2

sat

)
.

(89)

According to (86), σ2
d,m is a higher-order infinitesimality

of ρt
MA2

sat
when ρt

MA2
sat

< 1, the impact of σ2
d,m is slight and

can be ignored. Then, by substituting (87), (88), and (89) into
(26) and exploiting the statistic properties of tm, rm, and am,
SINR with the large IBO can be given by (39). Therefore,
Proposition 3 holds.
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