2 research outputs found

    Impetus in Fabrication of Biosensors

    No full text
    A biosensor is an element employed for the detection of an analyte by combining a biological component with a physico-chemical detector component. Biological component can be microorganisms, cell receptors, enzymes, antibodies, nucleic acids. The detector works in a physico-chemical way like electrochemical, optical, piezoelectrical, electrochemical or thermal that transforms the signal resulting from the interaction of the analyte with the biological element into another signal that can be easily measured and quantified

    Carbon Nanosheets Infused with Gold Nanoparticles as an Ultrasensitive Nose for Electrochemical Arsenic Sensing

    No full text
    Herein, we introduce an eco-friendly electrochemical sensor based on melamine-enriched nitrogen-doped carbon nanosheets decorated with gold nanoparticles (Au-CNSm) for arsenic sensing. An extremely facile, low-toxicity, biocompatible, and affordable hydrothermal technique was adopted for the synthesis of the Au-CNSm nanocomposite. The Au-CNSm-integrated sensing platform was optimized for electrode composition by cyclic voltammetry (CV). Owing to the synergistic effects of melamine-enriched carbon nanosheets (CNSm) and gold nanoparticles (AuNPs), the anodic peak current increased in the Au-CNSm-modified sensing electrode as compared to the CNSm-decorated platform. A wide linear range of 0.0001–100 μM and a low detection limit of 0.0001 μM were obtained. The visual signals can be measured at a very minute concentration of 0.0001 μM (0.1 ppb) on a screen-printed carbon electrode (SPCE) modified with Au-CNSm. Hence, this electrode system clearly outperformed the previously reported studies in terms of linear range, limit of detection (LOD), and electrocatalytic activity for arsenic sensing. Interestingly, the fabricated biosensor can be developed as a point-of-care device for real-time environmental monitoring for public safety. Henceforth, owing to exceptional attributes such as portability, selectivity, and sensitivity, this device offers great promise in modeling a revolutionary new class of electrochemical sensing platforms for an ultrasensitive and reliable detection strategy for arsenite (As(III))
    corecore