349 research outputs found
The stellar population structure of the Galactic disk
The spatial structure of stellar populations with different chemical
abundances in the Milky Way contains a wealth of information on Galactic
evolution over cosmic time. We use data on 14,699 red-clump stars from the
APOGEE survey, covering 4 kpc <~ R <~ 15 kpc, to determine the structure of
mono-abundance populations (MAPs)---stars in narrow bins in [a/Fe] and
[Fe/H]---accounting for the complex effects of the APOGEE selection function
and the spatially-variable dust obscuration. We determine that all MAPs with
enhanced [a/Fe] are centrally concentrated and are well-described as
exponentials with a scale length of 2.2+/-0.2 kpc over the whole radial range
of the disk. We discover that the surface-density profiles of low-[a/Fe] MAPs
are complex: they do not monotonically decrease outwards, but rather display a
peak radius ranging from ~5 kpc to ~13 kpc at low [Fe/H]. The extensive radial
coverage of the data allows us to measure radial trends in the thickness of
each MAP. While high-[a/Fe] MAPs have constant scale heights, low-[a/Fe] MAPs
flare. We confirm, now with high-precision abundances, previous results that
each MAP contains only a single vertical scale height and that low-[Fe/H],
low-[a/Fe] and high-[Fe/H], high-[a/Fe] MAPs have intermediate (h_Z~300 to 600
pc) scale heights that smoothly bridge the traditional thin- and thick-disk
divide. That the high-[a/Fe], thick disk components do not flare is strong
evidence against their thickness being caused by radial migration. The
correspondence between the radial structure and chemical-enrichment age of
stellar populations is clear confirmation of the inside-out growth of galactic
disks. The details of these relations will constrain the variety of physical
conditions under which stars form throughout the MW disk.Comment: Code available at https://github.com/jobovy/apogee-map
The shapes of Milky Way satellites: looking for signatures of tidal stirring
We study the shapes of Milky Way satellites in the context of the tidal
stirring scenario for the formation of dwarf spheroidal galaxies. The standard
procedures used to measure shapes involve smoothing and binning of data and
thus may not be sufficient to detect structural properties like bars, which are
usually subtle in low surface brightness systems. Taking advantage of the fact
that in nearby dwarfs photometry of individual stars is available we introduce
discrete measures of shape based on the two-dimensional inertia tensor and the
Fourier bar mode. We apply these measures of shape first to a variety of
simulated dwarf galaxies formed via tidal stirring of disks embedded in dark
matter halos and orbiting the Milky Way. In addition to strong mass loss and
randomization of stellar orbits, the disks undergo morphological transformation
that typically involves the formation of a triaxial bar after the first
pericenter passage. These tidally induced bars persist for a few Gyr before
being shortened towards a more spherical shape if the tidal force is strong
enough. We test this prediction by measuring in a similar way the shape of
nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in
Ursa Minor, Sagittarius, LMC and possibly Carina. In addition, six out of
eleven studied dwarfs show elongated stellar distributions in the outer parts
that may signify transition to tidal tails. We thus find the shapes of Milky
Way satellites to be consistent with the predictions of the tidal stirring
model.Comment: 14 pages, 11 figures, accepted for publication in Ap
The HI Chronicles of LITTLE THINGS BCDs II: The Origin of IC 10's HI Structure
In this paper we analyze Very Large Array (VLA) telescope and Green Bank
Telescope (GBT) atomic hydrogen (HI) data for the LITTLE THINGS(1) blue compact
dwarf galaxy IC 10. The VLA data allow us to study the detailed HI kinematics
and morphology of IC 10 at high resolution while the GBT data allow us to
search the surrounding area at high sensitivity for tenuous HI. IC 10's HI
appears highly disturbed in both the VLA and GBT HI maps with a kinematically
distinct northern HI extension, a kinematically distinct southern plume, and
several spurs in the VLA data that do not follow the general kinematics of the
main disk. We discuss three possible origins of its HI structure and kinematics
in detail: a current interaction with a nearby companion, an advanced merger,
and accretion of intergalactic medium. We find that IC 10 is most likely an
advanced merger or a galaxy undergoing accretion.
1:Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy
Survey; https://science.nrao.edu/science/surveys/littlethingsComment: 36 pages, 17 figures, accepted for publication in The Astronomical
Journa
- …
