349 research outputs found

    The stellar population structure of the Galactic disk

    Full text link
    The spatial structure of stellar populations with different chemical abundances in the Milky Way contains a wealth of information on Galactic evolution over cosmic time. We use data on 14,699 red-clump stars from the APOGEE survey, covering 4 kpc <~ R <~ 15 kpc, to determine the structure of mono-abundance populations (MAPs)---stars in narrow bins in [a/Fe] and [Fe/H]---accounting for the complex effects of the APOGEE selection function and the spatially-variable dust obscuration. We determine that all MAPs with enhanced [a/Fe] are centrally concentrated and are well-described as exponentials with a scale length of 2.2+/-0.2 kpc over the whole radial range of the disk. We discover that the surface-density profiles of low-[a/Fe] MAPs are complex: they do not monotonically decrease outwards, but rather display a peak radius ranging from ~5 kpc to ~13 kpc at low [Fe/H]. The extensive radial coverage of the data allows us to measure radial trends in the thickness of each MAP. While high-[a/Fe] MAPs have constant scale heights, low-[a/Fe] MAPs flare. We confirm, now with high-precision abundances, previous results that each MAP contains only a single vertical scale height and that low-[Fe/H], low-[a/Fe] and high-[Fe/H], high-[a/Fe] MAPs have intermediate (h_Z~300 to 600 pc) scale heights that smoothly bridge the traditional thin- and thick-disk divide. That the high-[a/Fe], thick disk components do not flare is strong evidence against their thickness being caused by radial migration. The correspondence between the radial structure and chemical-enrichment age of stellar populations is clear confirmation of the inside-out growth of galactic disks. The details of these relations will constrain the variety of physical conditions under which stars form throughout the MW disk.Comment: Code available at https://github.com/jobovy/apogee-map

    The shapes of Milky Way satellites: looking for signatures of tidal stirring

    Full text link
    We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties like bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened towards a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, LMC and possibly Carina. In addition, six out of eleven studied dwarfs show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.Comment: 14 pages, 11 figures, accepted for publication in Ap

    The HI Chronicles of LITTLE THINGS BCDs II: The Origin of IC 10's HI Structure

    Full text link
    In this paper we analyze Very Large Array (VLA) telescope and Green Bank Telescope (GBT) atomic hydrogen (HI) data for the LITTLE THINGS(1) blue compact dwarf galaxy IC 10. The VLA data allow us to study the detailed HI kinematics and morphology of IC 10 at high resolution while the GBT data allow us to search the surrounding area at high sensitivity for tenuous HI. IC 10's HI appears highly disturbed in both the VLA and GBT HI maps with a kinematically distinct northern HI extension, a kinematically distinct southern plume, and several spurs in the VLA data that do not follow the general kinematics of the main disk. We discuss three possible origins of its HI structure and kinematics in detail: a current interaction with a nearby companion, an advanced merger, and accretion of intergalactic medium. We find that IC 10 is most likely an advanced merger or a galaxy undergoing accretion. 1:Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey; https://science.nrao.edu/science/surveys/littlethingsComment: 36 pages, 17 figures, accepted for publication in The Astronomical Journa
    corecore