6 research outputs found

    Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases

    No full text
    Impaired Akt1 signaling is observed in neurodegenerative diseases, including Parkinson's disease (PD). In PD models oxidative modification of Akt1 leads to its dephosphorylation and consequent loss of its kinase activity. To explore the underlying mechanism we exposed Neuro2A cells to cadmium, a pan inhibitor of protein thiol disulfide oxidoreductases, including glutaredoxin 1 (Grx1), or downregulated Grx1, which led to dephosphorylation of Akt1, loss of its kinase activity, and also decreased Akt1 protein levels. Mutation of cysteines to serines at 296 and 310 in Akt1 did not affect its basal kinase activity but abolished cadmium- and Grx1 downregulation-induced reduction in Akt1 kinase activity, indicating their critical role in redox modulation of Akt1 function and turnover. Cadmium-induced decrease in phosphorylated Akt1 correlated with increased association of wild-type (WT) Akt1 with PP2A, which was absent in the C296-310S Akt1 mutant and was also abolished by N-acetylcysteine treatment. Further, increased proteasomal degradation of Akt1 by cadmium was not seen in the C296-310S Akt1 mutant, indicating that oxidation of cysteine residues facilitates degradation of WT Akt1. Moreover, preventing oxidative modification of Akt1 cysteines 296 and 310 by mutating them to serines increased the cell survival effects of Akt1. Thus, in neurodegenerative states such as PD, maintaining the thiol status of cysteines 296 and 310 in Akt1 would be critical for Akt1 kinase activity and for preventing its degradation by proteasomes. Preventing downregulation of Akt signaling not only has long-range consequences for cell survival but could also affect the multiple roles that Ala plays, including in the Akt-mTOR signaling cascade. (C) 2014 Elsevier Inc. All rights reserved

    Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt

    No full text
    Impairment of Akt phosphorylation, a critical survival signal, has been implicated in the degeneration of dopaminergic neurons in Parkinson's disease. However, the mechanism underlying pAkt loss is unclear. In the current study, we demonstrate pAkt loss in ventral midbrain of mice treated with dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), when compared to ventral midbrain of control mice treated with vehicle alone. Thiol residues of the critical cysteines in Akt are oxidized to a greater degree in mice treated with MPTP, which is reflected as a 40% loss of reduced Akt. Association of oxidatively modified Akt with the phosphatase PP2A, which can lead to enhanced dephosphorylation of pAkt, was significantly stronger after MPTP treatment. Maintaining the protein thiol homeostasis by thiol antioxidants prevented loss of reduced Akt, decreased association with PP2A, and maintained pAkt levels. Overexpression of glutaredoxin, a protein disulfide oxidoreductase, in human primary neurons helped sustain reduced state of Akt and abolished MPP+-mediated pAkt loss. We demonstrate for the first time the selective loss of Akt activity, in vivo, due to oxidative modification of Akt and provide mechanistic insight into oxidative stress-induced down-regulation of cell survival pathway in mouse midbrain following exposure to MPTP.-Durgadoss, L., Nidadavolu, P., Khader Valli, R., Saeed, U., Mishra, M., Seth, P., Ravindranath, R. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt. FASEB J. 26, 1473-1483 (2012). www.fasebj.or

    Dynamic Changes in the Endocannabinoid System during the Aging Process: Focus on the Middle-Age Crisis

    No full text
    Endocannabinoid (eCB) signaling is markedly decreased in the hippocampus (Hip) of aged mice, and the genetic deletion of the cannabinoid receptor type 1 (CB1) leads to an early onset of cognitive decline and age-related histological changes in the brain. Thus, it is hypothesized that cognitive aging is modulated by eCB signaling through CB1. In the present study, we detailed the changes in the eCB system during the aging process using different complementary techniques in mouse brains of five different age groups, ranging from adolescence to old age. Our findings indicate that the eCB system is most strongly affected in middle-aged mice (between 9 and 12 months of age) in a brain region-specific manner. We show that 2-arachidonoylglycerol (2-AG) was prominently decreased in the Hip and moderately in caudate putamen (CPu), whereas anandamide (AEA) was decreased in both CPu and medial prefrontal cortex along with cingulate cortex (mPFC+Cg), starting from 6 months until 12 months. Consistent with the changes in 2-AG, the 2-AG synthesizing enzyme diacylglycerol lipase α (DAGLα) was also prominently decreased across the sub-regions of the Hip. Interestingly, we found a transient increase in CB1 immunoreactivity across the sub-regions of the Hip at 9 months, a plausible compensation for reduced 2-AG, which ultimately decreased strongly at 12 months. Furthermore, quantitative autoradiography of CB1 revealed that [3H]CP55940 binding markedly increased in the Hip at 9 months. However, unlike the protein levels, CB1 binding density did not drop strongly at 12 months and at old age. Furthermore, [3H]CP55940 binding was significantly increased in the lateral entorhinal cortex (LEnt), starting from the middle age until the old age. Altogether, our findings clearly indicate a middle-age crisis in the eCB system, which could be a potential time window for therapeutic interventions to abrogate the course of cognitive aging
    corecore