17 research outputs found

    Rabbit haemorrhagic disease: experimental study of a recent highly pathogenic GI.2/RHDV2/b strain and evaluation of vaccine efficacy

    Full text link
    [EN] In 2010, a variant of the rabbit haemorrhagic disease virus (RHDV) belonging to a new GI.2 genotype was identified in France and rapidly spread worldwide. Due to antigenic difference, new vaccines including G1.2 strains have been developed to confer adequate protection. An increase in the pathogenicity of the circulating strains was recently reported. The objective of this experimental study was to characterise the infection with a highly pathogenic GI.2/RHDV2/b isolate (2017) and assess the efficacy of Filavac VHD K C+V vaccine (Filavie) against this strain. Four and 10-wk-old specific pathogen-free rabbits were inoculated with a recommended dose of vaccine. After 7 d, controls and vaccinated rabbits were challenged and clinically monitored for 14 d. All animals were necropsied and blood, organs and urine were sampled for quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis. In adult groups, regular nasal and rectal swabbing were performed, and faeces were collected after death to monitor RNA shedding. In control groups, the challenge strain induced acute RHD between 31 and 72 h post-inoculation, with a mortality rate of 100% for kits and 89% for adult rabbits. Except for a shorter mean time to death in kits, similar clinical signs and lesions were observed between age groups. The vaccination significantly prevented all mortality, clinical signs, detection of viral RNA in serum and gross lesions in kits and adult rabbits. In adult groups, we also demonstrated that vaccine significantly protected from detectable RNA shedding via naso-conjunctival and rectal routes. Two weeks after challenge, RNA copies were not detected by PCR in the liver, spleen, lungs, kidneys, faeces and urine of vaccinated adult rabbits. The findings for kits were similar, except that very low levels of RNA were present in the liver and spleen of a few rabbits. These data show that immunisation prevented any significant viral multiplication and/or allowed a rapid clearance. We concluded that, despite the quick evolution of GI.2/RHDV2/b strains, the protection conferred by the vaccine remains adequate. In the context of coexistence of both GI.1 and GI.2 genotypes in some countries, with the circulation of multiples recombinant viruses, the vaccination should be based on the association of strains from both genotypes.Le Minor, O.; Boucher, S.; Joudou, L.; Mellet, R.; Sourice, M.; Le Moullec, T.; Nicolier, A.... (2019). Rabbit haemorrhagic disease: experimental study of a recent highly pathogenic GI.2/RHDV2/b strain and evaluation of vaccine efficacy. World Rabbit Science. 27(3):143-156. https://doi.org/10.4995/wrs.2019.11082SWORD143156273Abrantes J., van der Loo W., Le Pendu J., Esteves P.J. 2012. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet. Res., 43: 12. https://doi.org/10.1186/1297-9716-43-12Abrantes J., Lopes A.M., Dalton K.P., Melo P., Correia J.J., Ramada M., Alves P.C., Parra F., Esteves P.J. 2013. New variant of rabbit hemorrhagic disease virus, Portugal, 2012-2013. Emerg. Infect. Dis., 19: 1900-1902. https://doi.org/10.3201/eid1911.130908Calvete C., Sarto P., Calvo A.J., Monroy F., Calvo J.H. 2014. Letter - Could the new rabbit haemorrhagic disease virus variant (RHDVb) be fully replacing classical RHD strains in the Iberian Peninsula?. World Rabbit Sci., 22: 91-91. https://doi.org/10.4995/wrs.2014.1715Calvete C, Mendoza M, Alcaraz A, Sarto M.P., JimĂ©nez-de-BagĂŒĂ©ss M.P., Calvo A.J., Monroy F., Calvo J.H., 2018. Rabbit haemorrhagic disease: Cross-protection and comparative pathogenicity of GI.2/RHDV2/b and GI.1b/RHDV lagoviruses in a challenge trial. Vet. Microbiol., 219: 87-95. https://doi.org/10.1016/j.vetmic.2018.04.018Capucci L., Cavadini P., Schiavitto M., Lombardi G., Lavazza A. 2017. Increased pathogenicity in rabbit haemorrhagic disease virus type 2 (RHDV2). Vet. Rec., 180: 426. https://doi.org/10.1136/vr.104132Carvalho C.L., Duarte E.L., Monteiro M., Botelho A., Albuquerque T., Fevereiro M., Henriques A.M., Barros SS., Duarte MD. 2017. Challenges in the rabbit haemorrhagic disease 2 (RHDV2) molecular diagnosis of vaccinated rabbits. Vet. Microbiol. 198: 43-50. https://doi.org/10.1016/j.vetmic.2016.12.006Dalton K.P., Balseiro A., Juste R.A., Podadera A., Nicieza I., Del Llano D., GonzĂĄlez R., Martin Alonso J.M., Prieto J.M., Parra F., Casais R. 2018. Clinical course and pathogenicity of variant rabbit haemorrhagic disease virus in experimentally infected adult and kit rabbits: Significance towards control and spread. Vet. Microbiol., 220: 24-32. https://doi.org/10.1016/j.vetmic.2018.04.033Dalton K.P., Nicieza I., Abrantes J., Esteves P.J., Parra F., 2014. Spread of new variant RHDV in domestic rabbits on the Iberian Peninsula. Vet. Microbiol., 169: 67-73. https://doi.org/10.1016/j.vetmic.2013.12.015Dalton K.P., Nicieza I., Balseiro A., Muguerza M.A., Rosell J.M., Casais R., Álvarez Á.L., Parra F. 2012. Variant rabbit hemorrhagic disease virus in young rabbits, Spain. Emerg. Infect. Dis., 18: 2009-2012. https://doi.org/10.3201/eid1812.120341Duarte M., Henriques M., Barros S.C., Fagulha T., Ramos F., LuĂ­s T., Fevereiro M., Benevides S., Flor L., Barros S.V., Bernardo S. 2015. Detection of RHDV variant 2 in the Azores. Vet. Rec.,176: 130. https://doi.org/10.1136/vr.h497Forrester N.L., Boag B., Moss S.R., Turner S.L., Trout R.C., White P.J., Hudson P.J., Gould E.A., 2003. Long-term survival of New Zealand rabbit haemorrhagic disease virus RNA in wild rabbits, revealed by RT-PCR and phylogenetic analysis. J. Gen.Virol., 84: 3079-3086. https://doi.org/10.1099/vir.0.19213-0Gall A., Schirrmeier H. 2006. Persistence of rabbit haemorrhagic disease virus genome in vaccinated rabbits after experimental infection. J. Vet. Med. B. Infect. Dis. Vet. Public Health, 53: 358-362. https://doi.org/10.1111/j.1439-0450.2006.00986.xGall A., Hoffmann B., Teifke J.P., Lange B., Schirrmeier H., 2007. Persistence of viral RNA in rabbits which overcome an experimental RHDV infection detected by a highly sensitive multiplex real-time RT-PCR. Vet. Microbiol.,120: 17-32. https://doi.org/10.1016/j.vetmic.2006.10.006Hall R.N., Mahar J.E., Haboury S., Stevens V., Holmes E.C., Strive T. 2015. Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerg. Infect. Dis., 21: 2276-2278. https://doi.org/10.3201/eid2112.151210Le Gall G., Boilletot E., Morisse J.P. 1992. Viral haemorrhagic disease of rabbit: purification and characterization of a strain isolated in France. Ann. Rech. Vet., 23: 381-387.Le Gall-ReculĂ© G., Zwingelstein F., Boucher S., Le Normand B., Plassiart G., Portejoie Y., Decors A., Bertagnoli S., GuĂ©rin J.L., Marchandeau S. 2011. Detection of a new variant of rabbit haemorrhagic disease virus in France. Vet. Rec., 168: 137-138. https://doi.org/10.1136/vr.d697Le Gall-ReculĂ© G., Lavazza A., Marchandeau S., Bertagnoli S., Zwingelstein F., Cavadini, P., Martinelli N., Lombardi G., GuĂ©rin J.L., Lemaitre E., Decors A., Boucher S., Le Normand B., Capucci L. 2013. Emergence of a new lagovirus related to Rabbit Haemorrhagic Disease Virus. Vet. Res., 44: 81. https://doi.org/10.1186/1297-9716-44-81Le Gall-ReculĂ© G., Lemaitre E., Bertagnoli S., Hubert C., Top S., Decors A., Marchandeau S., Guitton J.S., 2017. Large-scale lagovirus disease outbreaks in European brown hares (Lepus europaeus) in France caused by RHDV2 strains spatially shared with rabbits (Oryctolagus cuniculus). Vet. Res., 48: 70. https://doi.org/10.1186/s13567-017-0473-yLe Minor O., Beilvert F., Le Moullec T., Djadour D., Martineau J. 2013. Evaluation de l'efficacitĂ© d'un nouveau vaccin contre le virus variant de la maladie hĂ©morragique virale du lapin (VHD).15Ăšmes JournĂ©es de la Recherche Cunicole, 19-20 novembre, Le Mans, France.Le Minor O., Joudou L., Le Moullec T., Beilvert F. 2017. InnocuitĂ© et efficacitĂ© de la vaccination Ă  2 et 3 semaines d'Ăąge contre le virus RHDV2 de la maladie hĂ©morragique virale du lapin (VHD).17Ăšmes JournĂ©es de la Recherche Cunicole, 22-13 novembre, Le Mans, France.Le Pendu J., Abrantes J., Bertagnoli S., Guitton J.S., Le Gall-ReculĂ© G., Lopes A.M., Marchandeau S., Alda F., Almeida T., CĂ©lio A.P., BĂĄrcena J., Burmakina G., Blanco E., Calvete C., Cavadini P., Cooke B., Dalton K., Delibes Mateos M., Deptula W., Eden J.S., Wang F., Ferreira C.C., Ferreira P., Foronda P., Gonçalves D., Gavier-WidĂ©n D., Hall R., Hukowska-Szematowicz B., Kerr P., Kovaliski J., et al. 2017. Proposal for a unified classification system and nomenclature of lagoviruses. J. Gen. Virol., 98:1658-1666. https://doi.org/10.1099/jgv.0.000840Lopes A.M., Correia J., Abrantes J., Melo P., Ramada M., MagalhĂŁes M.J., Alves P.C., Esteves P.J. 2015. Is the new variant RHDV replacing genogroup 1 in Portuguese wild rabbit populations? Viruses, 7: 27-36. https://doi.org/10.3390/v7010027Mahar J.E., Hall R.N., Peacock D., Kovaliski J., Piper M., Mourant R., Huang N., Campbell S., Gu X., Read A., Urakova N., Cox T., Holmes E.C., Strive T. 2018. Rabbit haemorrhagic disease virus 2 (GI.2) is replacing endemic strains of RHDV in the Australian landscape within 18 months of its arrival. J. Virol., https://doi.org/10.1128/JVI.01374-17Martin-Alonso A., Martin-Carrillo N., Garcia-livia K., Valladares B., Foronda P. 2016. Emerging rabbit haemorrhagic disease virus 2 (RHDV2) at the gates of the African continent. Infect. Genet. Evol., 44: 46-50. https://doi.org/10.1016/j.meegid.2016.06.034Morin H., Le Minor O., Beilvert F., Le Moullec T. 2015. DurĂ©e d'immunitĂ© confĂ©rĂ©e par un vaccin vis-Ă -vis des calicivirus classique et variant de la maladie virale hĂ©morragique. 16Ăšmes JournĂ©es de la Recherche Cunicole, 18-19 novembre, Le mans, France.Neimanis A., Larsson Pettersson U., Huang N., Gavier‑WidĂ©n D.,Strive T. 2018. Elucidation of the pathology and tissue distribution of Lagovirus europaeus GI.2/RHDV2 (rabbit haemorrhagic disease virus 2) in young and adult rabbits (Oryctolagus cuniculus). Vet. Res., 49: 46. https://doi.org/10.1186/s13567-018-0540-zOIE, 2017. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2017. Chapter 2.6.2. Rabbit Haemorrhagic disease. Available at: (Accessed 8 February 2018): http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/3.06.02_RHD.pdfOIE, 2016. Rabbit Haemorrhagic disease, Canada-immediate notification report. Available at: http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=20799.Puggioni G., Cavadini P., Maestrale C., Scivoli R., Botti G., Ligios C., Le Gall- Recule G., Lavazza A., Capucci L. 2013. The new French 2010 Rabbit Hemorrhagic Disease Virus causes an RHD-like disease in the Sardinian Cape hare (Lepus capensis mediterraneus). Vet. Res., 44: 96.https://doi.org/10.1186/1297-9716-44-96Read A.J., Kirkland P.D. 2017. Efficacy of a commercial vaccine against different strains of rabbit haemorrhagic disease virus. Aust. Vet. J., 95: 223-226. https://doi.org/10.1111/avj.12600SilvĂ©rio D., Lopes A.M., Melo-Ferreira J., MagalhĂŁes M.J., Monterroso P., Serronha A., Maio E., Alves P.C., Esteves P.J., Abrantes J. 2018. Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transbound. Emerg. Dis., 65: 983-992. https://doi.org/10.1111/tbed.12830Shien, J.H., Shieh, H.K., Lee, L.H. 2000. Experimental infections of rabbits with rabbit haemorrhagic disease virus monitored by polymerase chain reaction. Res. Vet. Sci., 68, 255-259. https://doi.org/10.1053/rvsc.1999.0372Spikey N., McCabe V.J., Greenwood N.M., Jack S.C., Sutton D., van der Waart L. 2012. Novel bivalent vectored vaccine for control of myxomatosis and rabbit haemorrhagic disease. Vet. Rec., 170: 309. https://doi.org/10.1136/vr.100366Strive T., Wright J., Kovaliski J., Botti G., Capucci L. 2010. The non-pathogenic Australian lagovirus RCV-A1 causes a prolonged infection and elicits partial crossprotection to rabbit haemorrhagic disease virus. Virology, 398, 125-134. https://doi.org/10.1016/j.virol.2009.11.045Westcott D.G., Frossard J.P., Everest D., Dastjerdi A., Duff J.P., Choudhury B. 2014. Incursion of RHDV2- like variant in Great Britain. Vet. Rec., 174: 333-333. https://doi.org/10.1136/vr.g234

    Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways

    Get PDF
    A specific small-molecule inhibitor of p97 would provide an important tool to investigate diverse functions of this essential ATPase associated with diverse cellular activities (AAA) ATPase and to evaluate its potential to be a therapeutic target in human disease. We carried out a high-throughput screen to identify inhibitors of p97 ATPase activity. Dual-reporter cell lines that simultaneously express p97-dependent and p97-independent proteasome substrates were used to stratify inhibitors that emerged from the screen. N^2,N^4-dibenzylquinazoline-2,4-diamine (DBeQ) was identified as a selective, potent, reversible, and ATP-competitive p97 inhibitor. DBeQ blocks multiple processes that have been shown by RNAi to depend on p97, including degradation of ubiquitin fusion degradation and endoplasmic reticulum-associated degradation pathway reporters, as well as autophagosome maturation. DBeQ also potently inhibits cancer cell growth and is more rapid than a proteasome inhibitor at mobilizing the executioner caspases-3 and -7. Our results provide a rationale for targeting p97 in cancer therapy

    Bilateral fibrodysplasia ossificans affecting the masticatory muscles and causing irreversible trismus in a domestic shorthair cat

    No full text
    Case summary An 8-year-old spayed female domestic shorthair cat was referred for trismus of progressive onset, which had started at least 1 month previously. The patient presented with weakness, anorexia, chronic bilateral purulent nasal discharge and concurrent reduced nasal airflow. Upon physical examination, painful mouth opening, bilateral swelling of the temporal areas, with an inability to open and close the mouth completely, were apparent. A vertical mandibular range of motion (vmROM) of 22 mm was noted. Complete blood count, biochemistry, electrolytes and various serology tests were unremarkable. CT revealed multiple mineralised lesions within the masticatory muscles. Histopathological features were consistent with those seen in the human disease fibrodysplasia ossificans progressiva (FOP). Supportive treatment did not improve the vmROM, eventually resulting in a 13 mm open bite, and total inability to close and open the mouth. Cardiac arrest occurred at the induction of an anaesthesia procedure aiming to perform tracheostomy and nasal lavage. Despite emergency tracheotomy and cardiac resuscitation, humane euthanasia was elected by the owners. Post-mortem molecular investigations highlighted a heterozygous deletion, compatible with a splicing site mutation in ACVR1 , which is also associated with FOP in humans. Relevance and novel information This is the first report in the veterinary literature of FOP-like disease selectively affecting the masticatory muscles. This condition is associated with a poor prognosis, as no medical or surgical treatment has currently proven to be of any prophylactic or curative benefit. Although rare, FOP-like disease should be included in the differential diagnosis of trismus in the cat. Any further muscle injury should be avoided

    Low-Cost System for Ancient Stamps Range Image Acquisition

    No full text
    A complete and practical range image sensor development is presented in this paper: from the mathematical modeling to the shape reconstruction. This scanner aims to be integrated in a larger collaborative project. The final goal is to provide a framework to allow easy comparisons of ancient wooden items by historians. Motivations and expected results are clearly stated in accordance to financial and easy-to-use constraints. In order to alleviate the calibration process a new calibrating pattern is proposed. The pattern allow both calibration of camera and projector. The method is validated with experimental results. Experimental results are given for the calibration process and the range image acquisition. These results have been performed on both real and synthetic data, which allows us to comment quantitative performances as well as qualitative ones. They are quite encouraging and satisfactory

    Hausdorff distance-based multiresolution maps applied to image similarity measure

    No full text
    Abstract: Image comparison is widely used in image processing. For binary images that are not composed of a single shape, a local comparison can be interesting because the features are usually poor (colour) or difficult to extract (texture, forms). Thus a new binary image comparison method that uses a windowed Hausdorff distance is presented. It enables local dissimilarities to be quantified in a simple way. The comparison results in a dissimilarity map. These maps are then used to evaluate the image similarity. The evaluation uses a classification step that is based on a comparison of the dissimilarity map histogram with reference histograms. The comparison is carried out at different scales of a multiresolution analysis, allowing the most discriminating scale in a user-defined notion of dissimilarity to be chosen automatically in the learning step. As an application, a database of digitalized ancient illustrations is successfully processed by the new method

    Neuropathological survey of fallen stock: active surveillance reveals high prevalence of encephalitic listeriosis in small ruminants.

    Full text link
    This paper describes the prevalence of brain lesions in the Swiss fallen stock population of small ruminants. 3075 whole brains (75% sheep, 25% goats) were collected as part of a year-long active survey of transmissible spongiform encephalopathies (TSEs) in small ruminants conducted by the Swiss authorities between July 2004 and July 2005. All fallen stock brains were systematically examined by histopathology to obtain reliable data on histologically identifiable brain lesions. Lesions were found in an unexpectedly high number of animals (8.1% of all examined brains). A wide spectrum of diseases was detected showing that this approach provides an excellent opportunity to screen for the prevalence of neurological diseases. Encephalitic listeriosis was by far the most frequent cause of CNS lesions in both species and its prevalence was unexpectedly high when compared to notified confirmed cases. In conclusion, the prevalence of listeriosis as estimated by passive surveillance based on the notification of clinical suspects has been underestimated in the past
    corecore