5 research outputs found

    Rare Earth and Main Group Metal Poly(hydrosilyl) Compounds

    No full text
    The potassium poly­(hydrosilyl) compound KSi­(SiHMe<sub>2</sub>)<sub>3</sub>, which contains three β-SiH groups, is synthesized by the reaction of Si­(SiHMe<sub>2</sub>)<sub>4</sub> and KO<i>t</i>Bu. A single-crystal X-ray diffraction study reveals chains composed of head-to-tail KSi­(SiHMe<sub>2</sub>)<sub>3</sub> monomers. This potassium poly­(hydrosilyl) anion reacts with divalent metal halide salts in THF to form the bis­(silyl) compounds Mg­{Si­(SiHMe<sub>2</sub>)<sub>3</sub>}<sub>2</sub>THF<sub>2</sub> (<b>1·THF</b><sub><b>2</b></sub>), Ca­{Si­(SiHMe<sub>2</sub>)<sub>3</sub>}<sub>2</sub>THF<sub>3</sub> (<b>2·THF</b><sub><b>3</b></sub>), and Yb­{Si­(SiHMe<sub>2</sub>)<sub>3</sub>}<sub>2</sub>THF<sub>3</sub> (<b>3·THF</b><sub><b>3</b></sub>). A trivalent yttrium bis­(silyl), as part of a KCl-containing polymeric chain, is supported by K↼H–Si bridging interactions. The N donors pyridine (<b>py</b>) and dimethylaminopyridine (<b>DMAP</b>) readily substitute THF, giving tetrahedral magnesium and octahedral calcium silyl compounds. The one-bond silicon–hydrogen coupling constants (<sup>1</sup><i>J</i><sub>SiH</sub>), infrared stretching frequencies (ν<sub>SiH</sub>), and solid-state structures of <b>2·py</b><sub><b>4</b></sub> and <b>3·THF</b><sub><b>3</b></sub> indicate classical two center-two electron bonding between the metal center and the silyl ligand, as well as terminal (nonbridging) Si–H bonds within the silyl ligands. The magnesium and calcium compounds readily react with the Lewis acids PhB­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub> and B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> to give hydridoborate salts, whereas {κ<sup>3</sup>-To<sup>M</sup>}<sub>2</sub>Yb (<b>5</b>) (To<sup>M</sup> = tris­(4,4-dimethyl-2-oxazolinyl)­phenyl borate) is formed by reaction of TlTo<sup>M</sup> and <b>3·THF</b><sub><b>3</b></sub>

    Cyclopentadienyl-bis(oxazoline) Magnesium and Zirconium Complexes in Aminoalkene Hydroaminations

    No full text
    A new class of cyclopentadiene-bis­(oxazoline) compounds and their piano-stool-type organometallic complexes have been prepared as catalysts for hydroamination of aminoalkenes. The two compounds MeC­(Ox<sup>Me2</sup>)<sub>2</sub>C<sub>5</sub>H<sub>5</sub> (Bo<sup>M</sup>CpH; Ox<sup>Me2</sup> = 4,4-dimethyl-2-oxazoline) and MeC­(Ox<sup>Me2</sup>)<sub>2</sub>C<sub>5</sub>Me<sub>4</sub>H (Bo<sup>M</sup>Cp<sup>tet</sup>H) are synthesized from C<sub>5</sub>R<sub>4</sub>HI (R = H, Me) and MeC­(Ox<sup>Me2</sup>)<sub>2</sub>Li. These cyclopentadiene-bis­(oxazolines) are converted into ligands that support a variety of metal centers in piano-stool-type geometries, and here we report the preparation of Mg, Tl, Ti, and Zr compounds. Bo<sup>M</sup>CpH and Bo<sup>M</sup>Cp<sup>tet</sup>H react with MgMe<sub>2</sub>(O<sub>2</sub>C<sub>4</sub>H<sub>8</sub>)<sub>2</sub> to give the magnesium methyl complexes {Bo<sup>M</sup>Cp}­MgMe and {Bo<sup>M</sup>Cp<sup>tet</sup>}­MgMe. Bo<sup>M</sup>CpH and Bo<sup>M</sup>Cp<sup>tet</sup>H are converted to Bo<sup>M</sup>CpTl and Bo<sup>M</sup>Cp<sup>tet</sup>Tl by reaction with TlOEt. The thallium derivatives react with TiCl<sub>3</sub>(THF)<sub>3</sub> to provide [{Bo<sup>M</sup>Cp}­TiCl­(μ-Cl)]<sub>2</sub> and [{Bo<sup>M</sup>Cp<sup>tet</sup>}­TiCl­(μ-Cl)]<sub>2</sub>, the former of which is crystallographically characterized as a dimeric species. Bo<sup>M</sup>CpH and Zr­(NMe<sub>2</sub>)<sub>4</sub> react to eliminate dimethylamine and afford {Bo<sup>M</sup>Cp}­Zr­(NMe<sub>2</sub>)<sub>3</sub>, which is crystallographically characterized as a monomeric four-legged piano-stool compound. {Bo<sup>M</sup>Cp}­Zr­(NMe<sub>2</sub>)<sub>3</sub>, {Bo<sup>M</sup>Cp}­MgMe, and {Bo<sup>M</sup>Cp<sup>tet</sup>}­MgMe are efficient catalysts for the hydroamination/cyclization of aminoalkenes under mild conditions
    corecore