35 research outputs found

    Linear accelerator-based stereotactic fractionated photon radiotherapy as an eye-conserving treatment for uveal melanoma

    Get PDF
    Background: The purpose of this retrospective analysis is to analyze clinical outcome, visual acuity and enucleation rates after linear accelerator-based stereotactic fractionated photon radiotherapy for primary uveal melanoma. Methods: Twenty-four patients with primary uveal melanoma treated at the Department of Radiation and Oncology of the University Hospital Heidelberg between 1991 and 2015 were analyzed regarding survival and treatment-related toxicity including eye- and sight-preservation. Results: Photon radiotherapy (RT) offered good overall local control rates with a local progression-free survival (LPFS) of 82% after 5 years and a median LPFS of 5.5 years at a median follow-up time of 5.2 years. Gender had a significant impact on LPFS yielding a mean LPFS of 8.1 years for women and 8.7 years for men (p = 0.04). Of all local progressions, 80% occurred within the first 5 years after RT. In one case, enucleation as final therapy option was necessary. Enucleation-free survival (EFS) was related to the radiotherapy dose (p < 0.0001). Thus, higher prescribed doses led to a significantly higher enucleation rate. T-stage had no significant impact on EFS, but affected the enucleation rate (p = 0.01). The overall survival (OS) rate was 100% after 2 years and 70% after 5 years with a median OS of 5.75 years. Age (p = 0.046), T stage (p = 0.019), local control rate (p = 0.041) and the time between diagnosis and the first radiation session (p = 0.01) had a significant effect on OS. Applied biologically effective dose (BED) did not significantly influence OS or PFS. A 2-year sight preservation rate of 75% could be achieved. In all patients, irradiation could be applied safely without any interruptions due to side effects. Six significant late toxicities with consequential blindness could be observed, making a secondary enucleation necessary in four patients. An impairment of visual acuity due to chronic optic nerve atrophy was identified in five patients within 2 years after treatment. Conclusions: Linear accelerator-based stereotactic fractionated photon radiotherapy is an effective method in the treatment of uveal melanoma with excellent local control rates and a 2-year vision retention rate comparable to brachytherapy (BRT) or proton beam radiotherapy, even available in small centers and easy to implement. Interdisciplinary decision making is necessary to guarantee best treatment for every patient

    Intensity-modulated radiotherapy with integrated-boost in patients with bone metastasis of the spine: study protocol for a randomized controlled trial

    Get PDF
    Background: Stereotactic body radiation therapy (SBRT) using intensity-modulated radiotherapy (IMRT) with dose escalation by simultaneous integrated boost (SIB) can be a safe modality for treating spinal bone metastases with enhanced targeting accuracy and improve local tumor control. Methods/Design: This is a single-center, prospective, randomized, controlled trial. One hundred and twenty patients with spinal bone metastases will receive palliative radiation therapy at the Heidelberg University Hospital. SBRT will be given in five or ten fractions with or without SIB. Four treatment arms are planned: IMRT with 30 Gy in ten fractions, IMRT with 30 Gy in ten fractions and SIB to 40 Gy, IMRT with 20 Gy in five fractions, and IMRT with 20 Gy in five fractions and SIB to 30Gy in five fractions will be compared. The target parameters will be measured at baseline level and at three and six months after radiation. Discussion: The primary endpoint of this study was to assess and compare the local tumor control (by means of different fractionation schedules and biological doses to the tumor area). Secondary endpoints are acute and chronic adverse events, pain relief, quality of life, and fatigue. Trial registration: ClinicalTrials.gov, NCT02832765 . Registered on 27 July 2016

    Spinal bone metastases in colorectal cancer: a retrospective analysis of stability, prognostic factors and survival after palliative radiotherapy

    Get PDF
    Background: This retrospective analysis aimed to analyse the stability of spinal bone metastases in colorectal cancer (CRC) patients following radiotherapy (RT) by use of a validated score and to assess prognostic factors for stability and survival. Methods: Ninety-four patients with osteolytic spinal bone metastases from CRC were treated at the Department of Radiation Oncology at the University Hospital Heidelberg between 2000 and 2014. The stability of each affected vertebral body was assessed according to the validated Taneichi bone stability score on the basis of the treatment planning CT scan prior to RT and also based on the follow-up CT examinations at 3 and 6 months after RT. Additionally, bone survival rates (time between first day of RT and death from any cause) as well as prognostic factors for bone survival were evaluated for all study patients. Results: Before RT, 59 patients (63%) were rated unstable according to the Taneichi score. Pathological fractures within the irradiated region were diagnosed in 43 patients (46%) prior to RT. New fractures or progression of previously collapsed vertebrae were diagnosed in 4 patients (4%) after irradiation. Significant re-calcification and stabilization of former unstable bone metastases was only observed in 3/59 patients (3%) and 5/59 patients (9%). The median bone survival was 4.2 months (range 0.5–67.3 months) and 6 months after RT 61% of the patients were dead. Karnofsky performance score (KPS) (< 70% vs. ≥ 70%), chemotherapy and bisphosphonate therapy were predictive prognostic factors for bone survival. Conclusions: Our study population is characterized by poor bone survival and low re-calcification rates of unstable spinal bone lesions 3 and 6 months after RT. To avoid unnecessary hospitalisation and improve remaining QoL, short fractionated treatment schedules of RT may be prefered in this highly palliative situation, particularly for patients with a KPS < 70%

    The influence of fractionated radiotherapy on the stability of spinal bone metastases: a retrospective analysis from 1047 cases

    Get PDF
    Background: The effect of radiotherapy, in particular the application of different multi-fraction schedules in the management of unstable spinal bone metastases (SBM), is incompletely understood. This study aims to compare the radiological response regarding various dose and fractionation schedules of radiotherapy in the palliative treatment of SBM. Methods: We retrospectively assessed 1047 patients with osteolytic SBM, treated with palliative radiotherapy at our department between 2000 and 2015. Lung cancer (40.2%), breast (16.7%) and renal cancer (15.2%) were the most common solid tumors in this study. Different common multi-fraction regimen (5x4Gy, 10x3Gy, 14 × 2.5Gy and 20x2Gy) were compared with regard to radiological response and recalcification at 3 and 6 months after radiotherapy. The Taneichi score was used for classification of osteolytic SBM. Results: Median follow up was 6.3 months. The median overall survival (OS) in the short-course radiotherapy (SCR) group using less than 10 treatment fractions was 5.5 months vs. 9.5 months in the long-course radiotherapy (LCR) group using in excess of 10 fractions (log rank p &lt; .0001). Overall survival (OS) in the SCR group after 3 and 6 months was 66.8 and 49.1%, respectively vs 80.9 and 61.5%, respectively in the LCR group. 17.6% (n = 54/306) and 31.1% (n = 89/286) of unstable SBM were classified as stable in the SCR group at 3 and 6 months post radiotherapy, respectively (p &lt; .001 for both). In the LCR group, 24.1% (n = 28/116) and 34.2% (n = 38/111) of unstable SBM were stabilized after 3 and 6 months, respectively (p &lt; .001 for both). Conclusions: Our study shows no significant difference in stabilization achieving recalcification rates between multi-fraction schedules (SCR vs. LCR) in the palliative management of unstable SBM. Both groups with multi-fraction regimen demonstrate a stabilizing effect following 3 and 6 months after radiotherapy

    Sacral insufficiency fractures after high-dose carbon-ion based radiotherapy of sacral chordomas

    Get PDF
    Background: This study aimed to analyse the frequency and clinical relevance of sacral insufficiency fractures (SIFs) after high-dose carbon-ion based irradiation of sacral chordomas. Methods: A total of 56 patients were included in this retrospective study. Twenty one patients (37%) were treated with definitive radiotherapy (RT), and 35 patients (63%) received postoperative RT using carbon ions, either in combination with photons or as single-modality treatment (median radiation dose 66 Gy RBE, range 60–74 Gy). Follow-up examinations including MRI of the pelvis were performed at 3-monthly intervals in the first year and consecutively at 6-monthly intervals. Median follow-up was 35.5 months (range 2–83). Results: SIFs were diagnosed in 29 patients (52%) after a median follow-up of 11 months (range 1–62 months). Most sacral fractures (79%) occurred within 2 years after RT. For the overall study population, the fracture-free survival probability amounted to values of 0.68 (95% CI, 0.53–0.79) after 1 year, 0.46 (95% CI, 0.31–0.60) after 2 years, and 0.31 (95% CI, 0.16–0.47) after 5 years. Statistical analysis showed no significant difference regarding the fracture rates between patients who received an operation and postoperative RT and patients treated with definitive RT. About one third of the patients with SIFs (34%; 10 of 29 patients) had associated clinical symptoms, most notably pain. All patients with symptomatic fractures required strong analgesics and often intensive pain management. Conclusions: Sacral fractures after high-dose carbon ion-based RT of sacral chordomas were shown to be a considerable radiogenic late effect, affecting about half of the treated patients. However, only one third of these fractures were clinically symptomatic requiring regular medical care and pain therapy. Further hazard factor analysis in the future with larger patient numbers will possibly enable the identification of high-risk patients for developing SIFs with the ultimate goal to prevent symptomatic fractures

    Local response and pathologic fractures following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy for spinal metastases - a randomized controlled trial

    Get PDF
    Background: This was a prespecified secondary analysis of a randomized trial, which analyzed bone density following stereotactic body radiotherapy (SBRT) versus conventional three-dimensional conformal radiotherapy (3DCRT) as part of palliative management of painful spinal metastases. Methods: Fifty-five patients were enrolled in this single-institutional randomized exploratory trial (NCT02358720). Participants were randomly assigned to receive SBRT (single-fraction 24 Gy) or 3DCRT (30 Gy/10 fractions). Quantitative bone density was evaluated at baseline, 3 and 6 months in both irradiated and unirradiated spinal bodies, along with rates of pathologic fractures and vertebral compression fractures. Results: As compared to baseline, bone density became significantly higher at 3 and 6 months following SBRT by a median of 33.8% and 72.1%, respectively (p &lt; 0.01 for both). These figures in the 3DCRT cohort were 32.9% and 41.2%, respectively (p &lt; 0.01 for both). There were no statistical differences in bone density between SBRT and 3DCRT at 3 (p = 0.629) or 6 months (p = 0.327). Subgroup analysis of osteolytic metastases showed an increase in bone density relative to baseline in the SBRT (but not 3DCRT) arm. Bone density in unaffected vertebrae did not show substantial changes in either group. The 3-month incidence of new pathological fractures was 8.7% in the SBRT arm vs. 4.3% in the 3DCRT arm. Conclusions: Despite high ablative doses in the SBRT arm, the significant increase in bone density after 3 and 6 months was similar to that of 3DCRT. Our trial demonstrated a moderate rate of subsequent pathological fracture after SBRT. Future randomized investigations with larger sample sizes are recommended. Trial registration: www.clinicaltrials.gov : NCT02358720 on 9nd of February 2015

    Bone density and pain response following intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for vertebral metastases - secondary results of a randomized trial

    Get PDF
    Background: This was a prespecified secondary analysis of a randomized trial that analyzed bone density and pain response following fractionated intensity-modulated radiotherapy (IMRT) versus three-dimensional conformal radiotherapy (3DCRT) for palliative management of spinal metastases. Methods/materials: Sixty patients were enrolled in the single-institutional randomized exploratory trial, randomly assigned to receive IMRT or 3DCRT (30 Gy in 10 fractions). Along with pain response (measured by the Visual Analog Scale (VAS) and Chow criteria), quantitative bone density was evaluated at baseline, 3, and 6 months in both irradiated and unirradiated spinal bodies, along with rates of pathologic fractures and vertebral compression fractures. Results: Relative to baseline, bone density increased at 3 and 6 months following IMRT by a median of 24.8% and 33.8%, respectively (p &lt; 0.01 and p = 0.048). These figures in the 3DCRT cohort were 18.5% and 48.4%, respectively (p &lt; 0.01 for both). There were no statistical differences in bone density between IMRT and 3DCRT at 3 (p = 0.723) or 6 months (p = 0.341). Subgroup analysis of osteolytic and osteoblastic metastases showed no differences between groups; however, mixed metastases showed an increase in bone density over baseline in the IMRT (but not 3DCRT) arm. The 3-month rate of the pathological fractures was 15.0% in the IMRT arm vs. 10.5% in the 3DCRT arm. There were no differences in pathological fractures at 3 (p = 0.676) and 6 (p = 1.000) months. The IMRT arm showed improved VAS scores at 3 (p = 0.037) but not 6 months (p = 0.430). Using Chow criteria, pain response was similar at both 3 (p = 0.395) and 6 (p = 0.732) months. Conclusions: This the first prospective investigation evaluating the impact of IMRT vs. 3DCRT on bone density. Along with pain response and pathologic fracture rates, significant rises in bone density after 3 and 6 months were similar in both cohorts. Future randomized investigations with larger sample sizes are recommended. Trial registration: NCT, NCT02832830. Registered 14 July 201

    Improved survival of locoregional-advanced larynx and hypopharynx cancer patients treated according to the DeLOS-II protocol

    Get PDF
    IntroductionLarynx organ preservation (LOP) in locoregional-advanced laryngeal and hypopharyngeal squamous cell carcinoma (LA-LHSCC) being only R0-resectable (clear margins &gt; 5 mm) by total laryngectomy (TL) is desirable. Based on tumor-specific survival (TSS) and overall survival (OS) data from the RTOG 91-11 trial and meta-analyses of randomized clinical trials (RCTs), cisplatin-based concurrent radiochemotherapy (CRT) is discussed being superior to cisplatin-based induction chemotherapy followed by radiotherapy (IC+RT) and TL followed by postoperative RT (TL+PORT) or radiochemotherapy (TL+PORCT). Outside of RCTs, T4 LHSCC treated with TL+PORCT demonstrated improved OS and TSS compared to CRT alone; comparisons with docetaxel plus cisplatin (TP)-based IC+RT are unpublished. Head-to-head comparisons in RCTs of these four alternatives are missing.Materials and methodsWe utilized monocentric registry data to compare the outcome in the LOP trial DeLOS-II (NCT00508664) and propensity score (PS)–matched LHSCC patients. DeLOS-II utilized endoscopic tumor staging after one cycle of TP-based IC for selecting TL+R(C)T for non-responders versus IC+RT for responders. Main risk factors for survival (localization hypopharynx, T4, N+, tobacco smoking &gt;30 pack years, alcohol consumption &gt;60 g/day, age, sex) were used to calculate the individual PS for each DeLOS-II patient and 330 LHSCC patients suitable for DeLOS-II according to eligibility criteria in Leipzig by CRT (78), TL+PORT (148), and TL+PORCT (104). We performed PS matching with caliper width 0.2.ResultsThe 52 DeLOS-II patients (whole intent-to-treat cohort) and three PS-matched cohorts (52 LHSCC patients each) had equal distribution regarding risk factors including Charlson comorbidity score (CS; all p &gt; 0.05) but differed in outcome. During 12,498.6 months of follow-up, 162 deaths (36/41/43/42 in DeLOS-II/TL+PORCT/TL+PORT/CRT, p = 0.356) occurred; DeLOS-II patients had superior OS and TSS. Compared to DeLOS-II, the HR (95% CI) observed in TL+PORCT, TL+PORT, and CRT for OS and TSS were 1.49 (0.92–2.43), 1.49 (1.15–3.18), and 1.81 (1.11–2.96) for OS; and 2.07 (0.944–4.58), 3.02 (1.32–6.89), and 3.40 (1.58–7.31) for TSS.ConclusionIn addition potential LOP, LA-LHSCC suitable for LOP according the DeLOS-II protocol may achieve improved survival

    The role of DNA polymerase eta in determining cellular responses to chemo-radiation treatment

    No full text
    DNA polymerase η (pol η), a crucial component of the cellular translesion synthesis pathway, allows cells to bypass and thereby temporarily tolerate DNA damage. Inherited deficiency of pol η, as reported in the variant form of xeroderma pigmentosum, predisposes to UV light-induced skin cancers. To date, pol η is the only DNA polymerase shown to exhibit a causal link to the formation of cancers in humans. However, the role of pol η in the cellular response to forms of DNA damage other than UV-induced lesions is largely unknown. In the first part of this thesis, it is shown that cells deficient in pol η are resistant to ionising radiation. Deficiency in the polymerase was associated with accumulation of cells in S phase of the cell cycle. Cells deficient in pol η demonstrated increased homologous recombination-directed repair of DNA double-strand breaks created by ionising radiation, and depletion of the homologous recombination protein X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells compared to pol η-complemented cells. These findings suggest that homologous recombination mediates S phase-dependent radioresistance associated with pol η-deficiency. In the second part of this thesis, it is shown that pol η-deficient cells have increased sensitivity to the chemotherapeutic compound, oxaliplatin, compared to pol η-deficient expressing cells, but not to the drug 5-fluorouracil that is usually administered in combination with oxaliplatin in the clinical setting. Despite the importance of pol η for cellular survival following exposure to oxaliplatin, the drug did not upregulate the enzyme after either short-term or long-term exposure. Inhibition of pol η activity by siRNA-mediated knockdown of the protein sensitised cells to oxaliplatin treatment, and partially reversed acquired resistance in oxaliplatin-resistant tumour cell lines. These data suggest that pol η is an interesting target whose function can potentially be interfered with to optimise oxaliplatin-based chemotherapy. In the third part of this thesis, clinical samples obtained from oesophageal cancer patients before and after treatment with oxaliplatin-containing chemotherapy were analysed for POLH mRNA levels encoding pol η protein. Malignant tissue specimens obtained before treatment demonstrated a significantly higher level of POLH mRNA than matched normal oesophageal tissue samples. Contrary to the preclinical data, high POLH mRNA expression before therapy was shown to correlate with increased overall and disease-free survival of the patient cohort in the clinical trial. Additionally, patients with high POLH mRNA-expressing cancers had better therapeutic responses (measured by PET-CT) to oxaliplatin-based treatment than those with low levels. These data suggest that POLH mRNA expression should be tested as a biomarker to predict survival and therapeutic responses in oesophageal cancer patients treated with oxaliplatin-containing chemotherapy.</p

    Automatic Tumor Segmentation With a Convolutional Neural Network in Multiparametric MRI: Influence of Distortion Correction

    No full text
    Precise tumor segmentation is a crucial task in radiation therapy planning. Convolutional neural networks (CNNs) are among the highest scoring automatic approaches for tumor segmentation. We investigate the difference in segmentation performance of geometrically distorted and corrected diffusion-weighted data using data of patients with head and neck tumors; 18 patients with head and neck tumors underwent multiparametric magnetic resonance imaging, including T2w, T1w, T2*, perfusion (ktrans), and apparent diffusion coefficient (ADC) measurements. Owing to strong geometrical distortions in diffusion-weighted echo planar imaging in the head and neck region, ADC data were additionally distortion corrected. To investigate the influence of geometrical correction, first 14 CNNs were trained on data with geometrically corrected ADC and another 14 CNNs were trained using data without the correction on different samples of 13 patients for training and 4 patients for validation each. The different sets were each trained from scratch using randomly initialized weights, but the training data distributions were pairwise equal for corrected and uncorrected data. Segmentation performance was evaluated on the remaining 1 test-patient for each of the 14 sets. The CNN segmentation performance scored an average Dice coefficient of 0.40 ± 0.18 for data including distortion-corrected ADC and 0.37 ± 0.21 for uncorrected data. Paired t test revealed that the performance was not significantly different (P = .313). Thus, geometrical distortion on diffusion-weighted imaging data in patients with head and neck tumor does not significantly impair CNN segmentation performance in use
    corecore