18 research outputs found

    The Transient Reactor Test Facility (TREAT)

    Get PDF
    Constructed in the late 1950s, the Transient Reactor Test facility (TREAT) provided numerous transient irradiations until operation was suspended in 1994. It was later refurbished, and resumed operations in 2017 to meet the data needs of a new era of nuclear fuel safety research. TREAT uses uranium oxide dispersed in graphite blocks to yield a core that affords strong negative temperature feedback. Automatically controlled, fast-acting transient control rods enable TREAT to safely perform extreme power maneuvers—ranging from prompt bursts to longer power ramps—to broadly support research on postulated accidents for many reactor types. TREAT’s experiment devices work in concert with the reactor to contain specimens, support in situ diagnostics, and provide desired test environments, thus yielding a uniquely versatile facility. This chapter summarizes TREAT’s design, history, current efforts, and future endeavors in the field of nuclear-heated fuel safety research

    AFIP-4 Irradiation Summary Report

    Get PDF
    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results

    Potential Annealing Treatments For Tailoring The Starting Microstructure Of Low-Enriched U-Mo Dispersion Fuels To Optimize Performance During Irradiation

    No full text
    Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525°C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475°C. © 2011 Elsevier B.V. All rights reserved

    Accelerated Radiation Transport Modeling Techniques for Pencil Beam Computed Tomography using Gamma Rays

    No full text
    Monte Carlo radiation transport modeling studies were performed for a compact, and high-resolution gamma-ray computed tomography system designed for imaging irradiated nuclear fuel. The system comprises a 60Co source – chosen for its highly penetrating 1173 keV and 1332 keV gamma rays – a pair of high-aspect-ratio pencil beam collimators, and an inorganic scintillator detector. Two acceleration methods are proposed to rapidly model a transmission type gamma-ray tomography system. The first, a variance reduction technique, is based on performing Monte Carlo simulations with a monodirectionally-biased source, sampled from a characteristic sub-volume of the full source volume. The second acceleration method is based on the deterministic calculations using the Beer–Lambert law and detector response characteristics. Comparison of simulations using acceleration approaches with analog simulations of the fully isotropic, full-volume equivalent, show that the Monte Carlo variance reduction technique gives quantitatively accurate predictions for large collimator aspect ratios while the deterministic calculations are semi-quantitative but converge close to the correct result as the collimator aspect ratio increases. As such, these techniques can be used to reduce the computational cost in generating simulated radiographs and tomographs by several orders of magnitude. Experimental validation efforts are currently underway and will be demonstrated in future work
    corecore