26 research outputs found

    The Regulation of DNA Methylation in Mammalian Development and Cancer

    Get PDF
    DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is not well understood. This dissertation focuses on the molecular mechanisms involved in the regulation of DNA methylation during mammalian development and in cancer. Using mouse embryonic stem cells (mESCs), an ideal model system for studying DNA methylation, I have discovered novel regulatory mechanisms that play important roles in de novo and maintenance DNA methylation. In one project, I show that Dnmt3L, a key regulator of de novo methylation, facilitates Dnmt3a-mediated methylation by stabilizing Dnmt3a2, the major Dnmt3a isoform in mESCs, thus uncovering a new role for Dnmt3L and providing a plausible explanation for the functional specificity of Dnmt3L. In a separate project, I demonstrate that PRMT6, an arginine methyltransferase responsible for asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a), negatively regulates maintenance DNA methylation by impairing the recruitment of the Dnmt1-Uhrf1 complex to chromatin, thereby identifying a novel crosstalk between histone arginine methylation and DNA methylation. Moreover, I show that PRMT6 upregulation contributes to global DNA hypomethylation in cancer. Lastly, my work results in the identification of an intestine-specific Dnmt1 protein product that originates from a proteolytic cleavage event, which could shed light on the regulation of DNA methylation in intestinal stem cells (ISCs). In summary, the research work in this dissertation advances our understanding of the regulatory network that controls DNA methylation changes in normal developmental processes and pathological conditions

    Non-Invasive Cytology Brush PCR Diagnostic Testing in Mucosal Leishmaniasis: Superior Performance to Conventional Biopsy with Histopathology

    Get PDF
    Traditional methods of diagnosing mucosal leishmaniasis (ML), such as biopsy with histopathology, are insensitive and require collection of an invasive diagnostic specimen. species identification was performed by PCR-based assays of positive specimens. (n = 3).Use of commercial grade cytology brush PCR for diagnosis of ML is sensitive, rapid, well tolerated, and carries none of the risks of invasive diagnostic procedures such as biopsy. Further optimization is required for adequate species identification. Further evaluation of this method in field and other settings is warranted

    Isolation and molecular identification of Leishmania ( Viannia ) peruviana from naturally infected Lutzomyia peruensis (Diptera: Psychodidae) in the Peruvian Andes

    No full text
    Leishmania (Viannia) peruviana was isolated from 1/75 Lutzomyia peruensis captured during May 2006 in an endemic cutaneous leishmaniasis region of the Peruvian Andes (Chaute, Huarochiri, Lima, Peru). Sand fly gut with promastigotes was inoculated into a hamster and the remaining body was fixed in ethanol. L. (Viannia) sp. was determined by polymerase chain reaction (PCR), and Leishmania species through molecular genotyping by PCR-restriction fragment length polymorphism analyses targeting the genes cpb and hsp70, resulting L. (V.) peruviana. The infected sand fly appeared 15 days after the rains finished, time expected and useful real time data for interventions when transmission is occurring

    Non-invasive cytology brush PCR for the diagnosis and causative species identification of American cutaneous leishmaniasis in Peru.

    Get PDF
    BACKGROUND: Traditional methods of detecting Leishmania from cutaneous lesions involve invasive diagnostic procedures, such as scrapings, which cause discomfort, require technical expertise, and carry risks of invasive procedures. We compared the performance of 2 novel, molecular-based non-invasive methods for the diagnosis of cutaneous leishmaniasis (CL). METHODS: Consecutive patients presenting to the Leishmania Clinic at the Hospital Nacional Cayetano Heredia were enrolled. PCR was performed on filter paper lesion impressions (FPLIs), cytology brushes, and lancets for detection of Leishmania DNA. Smears from lesion scrapings and leishmanin skin test were also performed. Outcome measures were sensitivity and specificity. Composite reference standard was any 2 of 5 tests positive. Species identification was performed by PCR assays of positive specimens. RESULTS: Ninety patients with 129 lesions were enrolled, 117 of which fulfilled reference criteria for a diagnosis of CL. Of these 117 lesions, 113 were positive by PCR of lancets used for lesion scrapings versus 116 by PCR of FPLIs (p=0.930) or 116 by PCR of cytology brushes (p=0.930). Sensitivity and specificity of PCR on lancets were 96.6% [95% CI 93.3-99.9%] and 100%, respectively. Sensitivity and specificity of FPLI PCR were 99.1% [95% CI 97.4-100%] and 100%, respectively. Sensitivity and specificity of cytology brush PCR were 99.1% [95% CI 97.4-100%] and 100%, respectively. Giemsa-stained lesion smear and leishmanin skin test had inferior sensitivities at 47.9% [95% CI 38.9-57.0%] and 82.3% [95% CI 73.9-90.7%], respectively, compared to PCR of invasive or non-invasive specimens (p<0.001). CONCLUSIONS: Cytology brush PCR constitutes a sensitive and specific alternative to traditional diagnostic assays performed on invasive specimens such as lesion scrapings. It performs comparatively to non-invasive FPLI PCR. This novel, rapid, and well-tolerated method has the potential for widespread use in the field and in pediatric populations where traditional specimen collection is difficult

    The Arginine Methyltransferase PRMT6 Regulates DNA Methylation and Contributes to Global DNA Hypomethylation in Cancer

    Get PDF
    Summary: DNA methylation plays crucial roles in chromatin structure and gene expression. Aberrant DNA methylation patterns, including global hypomethylation and regional hypermethylation, are associated with cancer and implicated in oncogenic events. How DNA methylation is regulated in developmental and cellular processes and dysregulated in cancer is poorly understood. Here, we show that PRMT6, a protein arginine methyltransferase responsible for asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a), negatively regulates DNA methylation and that PRMT6 upregulation contributes to global DNA hypomethylation in cancer. Mechanistically, PRMT6 overexpression impairs chromatin association of UHRF1, an accessory factor of DNMT1, resulting in passive DNA demethylation. The effect is likely due to elevated H3R2me2a, which inhibits the interaction between UHRF1 and histone H3. Our work identifies a mechanistic link between protein arginine methylation and DNA methylation, which is disrupted in cancer. : Veland et al. find that PRMT6, an arginine methyltransferase responsible for histone H3 arginine 2 (H3R2) methylation, negatively regulates maintenance DNA methylation by impairing UHRF1 recruitment to chromatin. The authors also find that PRMT6 upregulation contributes to global DNA hypomethylation in cancer cells. Keywords: PRMT6, arginine methylation, UHRF1, DNMT1, DNA methylation, cance
    corecore