4 research outputs found

    Enzyme-Catalyzed O<sub>2</sub> Removal System for Electrochemical Analysis under Ambient Air: Application in an Amperometric Nitrate Biosensor

    No full text
    Electroanalytical procedures are often subjected to oxygen interferences. However, achieving anaerobic conditions in field analytical chemistry is difficult. In this work, novel enzymatic systems were designed to maintain oxygen-free solutions in open, small volume electrochemical cells and implemented under field conditions. The oxygen removal system consists of an oxidase enzyme, an oxidase-specific substrate, and catalase for dismutation of hydrogen peroxide generated in the enzyme catalyzed oxygen removal reaction. Using cyclic voltammetry, three oxidase enzyme/substrate combinations with catalase were analyzed: glucose oxidase with glucose, galactose oxidase with galactose, and pyranose 2-oxidase with glucose. Each system completely removed oxygen for 1 h or more in unstirred open vessels. Reagents, catalysts, reaction intermediates, and products involved in the oxygen reduction reaction were not detected electrochemically. To evaluate the oxygen removal systems in a field sensing device, a model nitrate biosensor based on recombinant eukaryotic nitrate reductase was implemented in commercial screen-printed electrochemical cells with 200 Ī¼L volumes. The products of the aldohexose oxidation catalyzed by glucose oxidase and galactose oxidase deactivate nitrate reductase and must be quenched for biosensor applications. For general application, the optimum catalyst is pyranose 2-oxidase since the oxidation product does not interfere with the biorecognition element

    Surface-Attached Poly(glycidyl methacrylate) as a Versatile Platform for Creating Dual-Functional Polymer Brushes

    No full text
    Novel types of dual-functional surface-attached polymer brushes were developed by post-polymerization modification of polyĀ­(glycidyl methacrylate) brushes on glassy carbon substrates. Azide and alcohol groups were initially introduced by epoxide ring-openings of the side chains. These polymer brushes represent an attractive chemical platform to deliberately introduce other molecular units at specific sites. In this work, ferrocene and nitrobenzene redox units were immobilized through the two groups to create redox polymers. In-depth analysis by infrared reflectionā€“absorption spectroscopy and X-ray photoelectron spectroscopy revealed an almost quantitative conversion of the modification reactions. The electrochemical activity of the ferrocenyl part of this diode-like system was fully expressed with an electron transfer rate constant = 1.2 s<sup>ā€“1</sup> and surface density = 0.19 nmol cm<sup>ā€“2</sup> per nm section of the film, independent of its thickness. In contrast, for the nitrobenzene moieties diffusion of counterions (i.e., tetraalkylammonium) easily becomes the rate-controlling step, thereby leaving a substantial fraction of them electrochemically inactive

    Protection and Reactivation of the [NiFeSe] Hydrogenase from <i>Desulfovibrio vulgaris</i> Hildenborough under Oxidative Conditions

    No full text
    We report on the fabrication of bioanodes for H<sub>2</sub> oxidation based on [NiFeSe] hydrogenase. The enzyme was electrically wired by means of a specifically designed low-potential viologen-modified polymer, which delivers benchmark H<sub>2</sub> oxidizing currents even under deactivating conditions owing to efficient protection against O<sub>2</sub> combined with a viologen-induced reactivation of the O<sub>2</sub> inhibited enzyme. Moreover, the viologen-modified polymer allows for electrochemical co-deposition of polymer and biocatalyst and, by this, for control of the film thickness. Protection and reactivation of the enzyme was demonstrated in thick and thin reaction layers

    High-Density Droplet Microarray of Individually Addressable Electrochemical Cells

    No full text
    Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobicā€“hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets
    corecore