8 research outputs found

    Design, synthesis, and trypanocidal activity of new aminoadamantane derivatives.

    No full text
    To develop functionalized adamantanes for treating African trypanosomiasis, we report on the synthesis of new 1-alkyl-2-aminoadamantanes 1a- i, 1-alkyltricyclo[3.3.1.1 (3,7)]decan-2-guanylhydrazones 2a- g, and their congeneric thiosemicarbazones 3a, b. The potency of these compounds against Trypanosoma brucei was compared to that of amantadine and rimantadine and found to be substantially higher. The most active analogues, 1c, 1d, 2c, 2g, and 3b, illustrate the synergistic effect of the lipophilic character of the C1 side chain and the C2 functionality on trypanocidal activity

    Design and synthesis of bioactive adamantanaminoalcohols and adamantanamines.

    No full text
    Adamantanamines 16, 18, 21, 24, 27, 28, 30, 32, 35, 36, 37, 40, 46 and 48 were synthesized and tested for anti-influenza A virus and trypanocidal activity. The stereoelectronic requirements for optimal antiviral and trypanocidal potency were investigated. The effect of introducing a hydroxyl group close to the amino group on this class of compounds was examined for the first time. Aminoalcohol 24 proved to be the most active of the compounds tested against influenza A virus, being 6-fold more active than amantadine, equipotent to rimantadine and 26-fold more potent than ribavirin. Aminoalcohols 36 and 37 were found to have considerable activity against bloodstream forms of the African trypanosome, Trypanosoma brucei, being almost 10 times more potent than rimantadine

    Design and synthesis of bioactive 1,2-annulated adamantane derivatives.

    No full text
    Adamantanopyrrolidines 8, 9 and 10, adamantanopyrrolidines 16 and 18, adamantanoxazolone 20, adamantanopyrazolone 23, adamantanopyrazolothione 24 and adamantanocyclopentanamine 32 were synthesized and tested for anti-influenza A virus and trypanocidal activity. The stereoelectronic requirements for optimal antiviral and trypanocidal potency were investigated. Pyrrolidine 16 proved to be the most active of the compounds tested against influenza A virus, being 4-fold more active than amantadine, equipotent to rimantadine and 19-fold more potent than ribavirin. Oxazolone 20 showed significant trypanocidal activity against bloodstream forms of the African trypanosome, Trypanosoma brucei, being approximately 3 times more potent than rimantadine and almost 50-fold more active than amantadine

    Synthesis of Adamantane Aminoethers with Antitubercular Potential

    No full text
    Background: Intrigued by the fact that aminoadamantane derivatives, bearing the active 1,2-ethylenediamine moiety, are promising antitubercular agents, we report herein the synthesis and the antitubercular evaluation of N,N'-substituded-4,4'-[adamantane-2,2-diyl]bis(phe-noxyalkylamines) 1a-g, N,N'-substituded-4,4'-[adamantane-1,3-diyl]bis(phenoxyalkylamines) 2a-f, N,N'-substituded-[4-(1-adamantyl)phenoxy]alkylamines 3a-d and N,N'-substituded-[4-(2-adamantyl)phenoxy]alkylamines 4a, b. Method: A substituted diarylmethane moiety was introduced on the adamantane skeleton of the new derivatives. The synthesis of the above compounds involved the nucleophilic attack of the corresponding phenoxide, to the appropriate aminoalkylchloride hydrochloride under heating. Results: The double substituted adamantane derivatives with an aminoether side chain exhibit significant activity against Mycobacterium tuberculosis. Conclusion: The length and the nature of the amino end of the side chain influence the antitubercular activity. The double phenolic substitution of the adamantane scaffold and the aminoether side chain with a three-methylene spacer between the phenoxy group and the nitrogen atom present the better results. (analogues 1f, g and 2e, f). These findings merit further investigation aiming at the design of more potent adamantane antituberculars, bearing a number of different substituents on the diarylmethane pharmacophore, which will also be translocated to other posititions on the adamantane ring

    Design and synthesis of bioactive adamantane spiro heterocycles.

    No full text
    Spiro[aziridine-2,2'-adamantanes] 1 and 2, spiro[azetidine-2,2'-adamantanes] 3 and 5, spiro[azetidine-3,2'-adamantane] 13, spiro[piperidine-4,2'-adamantanes] 25 and 27, and spiro barbituric analog 18 were synthesized and tested for their anti-influenza A virus properties and for trypanocidal activity. The effect of ring size on potency was investigated. Piperidine 25 showed significant anti-influenza A virus activity, being 12-fold more active than amantadine, about 2-fold more active than rimantadine, and 54-fold more potent than ribavirin. It also proved to be the most active of the compounds tested against bloodstream forms of the African trypanosome, Trypanosoma brucei, being 1.5 times more potent than rimantadine and at least 25 times more active than amantadine
    corecore