29 research outputs found

    Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis

    Get PDF
    Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.</p

    Structurally diverse mitochondrial branched chain aminotransferase (BCATm) leads with varying binding modes identified by fragment screening

    Get PDF
    Inhibitors of mitochondrial branched chain aminotransferase (BCATm), identified using fragment screening, are described. This was carried out using a combination of STD-NMR, thermal melt (Tm), and biochemical assays to identify compounds that bound to BCATm, which were subsequently progressed to X-ray crystallography, where a number of exemplars showed significant diversity in their binding modes. The hits identified were supplemented by searching and screening of additional analogues, which enabled the gathering of further X-ray data where the original hits had not produced liganded structures. The fragment hits were optimized using structure-based design, with some transfer of information between series, which enabled the identification of ligand efficient lead molecules with micromolar levels of inhibition, cellular activity, and good solubility

    Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Get PDF
    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness

    Role of protein kinase C and carboxyl-terminal region in acute desensitization of vasopressin V1a receptor

    Get PDF
    AbstractThe role of protein kinase C activation and carboxyl-terminal region in rapid desensitization of the vasopressin V1a receptor was investigated in Xenopus oocytes. Preincubation of the oocytes with vasopressin or with the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG), or direct injection of active protein kinase C, all blunted the calcium response of the V1a receptor. Truncation of the 51 terminal amino acids (S374STOP) modified neither the intracellular calcium response to vasopressin nor its desensitization by vasopressin or OAG. These data suggest that desensitization of the V1a receptor is mediated by PKC activation and that its carboxyl-terminal domain is not required for signal transduction and rapid desensitization

    Role of the carboxyl-terminal region, di-leucine motif and cysteine residues in signalling and internalization of vasopressin V1a receptor

    Get PDF
    AbstractThe structural requirements for internalization and signalling of the vasopressin V1a receptor were investigated in stably transfected HEK-293 cells. Removal of the 51 C-terminal amino acids did not affect vasopressin binding, calcium signalling, heterologous desensitization or internalization of the receptor. Deletion of 14 additional amino acids reduced vasopressin-dependent calcium increase and impaired receptor internalization. Substitution of cysteines 371-372 did not affect intracellular signalling, but decreased endocytosis by 26%. Substitution of the 361-362 leucine by alanine residues reduced by 56% V1a receptor sequestration without affecting calcium signalling. These results indicate that di-cysteine and mostly di-leucine motifs present in the C-terminal region of the V1a receptor are involved in its internalization

    Lysophospholipids--Receptor Revelations

    Full text link
    Upon cell activation, membrane phospholipids are metabolized into potent lysophospholipid (LP) mediators, such as sphingosine 1-phosphate and lysophosphatidic acid. LPs fulfill signaling roles in organisms as diverse as yeast and humans. The recent discovery of G protein–coupled receptors for LPs in higher eukaryotes, and their involvement in regulating diverse processes such as angiogenesis, cardiac development, neuronal survival, and immunity, has stimulated growing interest in these lipid mediators. LP receptor biology has generated insights into fundamental cellular mechanisms and may provide therapeutic targets for drug development.</jats:p
    corecore