7,457 research outputs found

    Longitudinal inverted compressibility in super-strained metamaterials

    Get PDF
    We develop a statistical physics theory for solid-solid phase transitions in which a metamaterial undergoes longitudinal contraction in response to increase in external tension. Such transitions, which are forbidden in thermodynamic equilibrium, have recently been shown to be possible during the decay of metastable, super-strained states. We present a first-principles model to predict these transitions and validate it using molecular dynamics simulations. Aside from its immediate mechanical implications, our theory points to a wealth of analogous inverted responses, such as inverted susceptibility or heat-capacity transitions, allowed when considering realistic scales

    Critical Switching in Globally Attractive Chimeras

    Full text link
    We report on a new type of chimera state that attracts almost all initial conditions and exhibits power-law switching behavior in networks of coupled oscillators. Such switching chimeras consist of two symmetric configurations, which we refer to as subchimeras, in which one cluster is synchronized and the other is incoherent. Despite each subchimera being linearly stable, switching chimeras are extremely sensitive to noise: arbitrarily small noise triggers and sustains persistent switching between the two symmetric subchimeras. The average switching frequency scales as a power law with the noise intensity, which is in contrast with the exponential scaling observed in typical stochastic transitions. Rigorous numerical analysis reveals that the power-law switching behavior originates from intermingled basins of attraction associated with the two subchimeras, which in turn are induced by chaos and symmetry in the system. The theoretical results are supported by experiments on coupled optoelectronic oscillators, which demonstrate the generality and robustness of switching chimeras

    Energy-angle dispersion of accelerated heavy ions at 67P/Churyumov–Gerasimenko: implication in the mass-loading mechanism

    Get PDF
    The Rosetta spacecraft studied the comet 67P/Churyumov–Gerasimenko for nearly two years. The Ion Composition Analyzer instrument on board Rosetta observed the positive ion distributions in the environment of the comet during the mission. A portion of the comet's neutral coma is expected to get ionized, depending on the comet's activity and position relative to the Sun, and the newly created ions are picked up and accelerated by the solar wind electric field, while the solar wind flow is deflected in the opposite direction. This interaction, known as the mass-loading mechanism, was previously studied by comparing the bulk flow direction of both the solar wind protons and the accelerated cometary ions with respect to the direction of the magnetic and the convective solar wind electric field. In this study, we show that energy–angle dispersion is occasionally observed. We report two types of dispersion: one where the observed motion is consistent with ions gyrating in the local magnetic field and another where the energy–angle dispersion is opposite to that expected from gyration in the local magnetic field. Given that the cometary ion gyro-radius in the undisturbed solar wind magnetic and electric field is expected to be too large to be detected in this way, our observations indicate that the local electric field might be significantly smaller than that of the undisturbed solar wind. We also discuss how the energy–angle dispersion, which is not consistent with gyration, may occur due to spatially inhomogeneous densities and electric fields

    A combined approach involving ampelographic description, berry oenological traits and molecular analysis to study native grapevine varieties of Greece

    Get PDF
    A combined approach involving phenotypical characterization (ampelographic description and oenological traits) and molecular analysis was applied on 91 accessions of native Greek grape varieties plus 3 references, all conserved in the Ampelographic Collection of the Aristotle University of Thessaloniki. The accessions were described in accordance to 48 OIV descriptors. Their berry oenological traits were determined at maturity to detect a high juice sugar concentration in most of the assessed varieties, whereas the titratable acidity was found to be extremely low, particularly in the white accessions. Moreover, skin anthocyanin and phenolic content fluctuated from 0.09 to 39.4 mg∙g-1 f.w. and from 2.05 to 30.65 mg∙g-1 f.w. respectively, whereas seed phenolic content was in the range of 2.83 and 32.72 mg∙g-1 f.w. Finally, the discriminative SSR analysis confirmed the differences and similarities among the analyzed varieties as can be evinced from the phylogenetic analysis where close genetic relationship has been detected between 'Fokiano' and 'Armeletousa', 'Moschato Spinas' and 'Moschato Samou', 'Vilana' and 'Asprouda Patron', and 'Mouchtouri' and 'Mavro Spetson'. In all these occasions, the parts of each pair possess similar morphological characteristics

    Pythagoras project: Development of an innovative training package on Indoor Environment Quality

    Get PDF
    The aim of the Pythagoras project is the development and assessment of Greek national training material in the sector of indoor environmental quality. The need for education in this specific sector is dictated by the significant indoor environment deterioration and associated health hazards, which are caused by low ventilation levels, combined with the use of many modern building materials that aggravate pollutants emissions. Early in the project, a review is undertaken of the international literature and the syllabuses of foreign research and educational institutions active in indoor environment quality issues. At the same time, the requirements of the Greek educational and broader society, related to issues of indoor pollution and health, are determined. A training methodology is consequently developed, with the objective to optimally cover all the parameters associated with the indoor environment quality, for trainees of various disciplines. The training material is produced both in printed (book) and integrated electronic (e-learning) format. Additionally, four seminars are organized covering the respective sections of the training package. The training package is being assessed both by the trainees but also by international experts in the sector of indoor environment quality

    Investigating short-time-scale variations in cometary ions around comet 67P

    Get PDF
    The highly varying plasma environment around comet 67P/Churyumov–Gerasimenko inspired an upgrade of the ion mass spectrometer (Rosetta Plasma Consortium Ion Composition Analyzer) with new operation modes, to enable high time resolution measurements of cometary ions. Two modes were implemented, one having a 4 s time resolution in the energy range 0.3–82 eV/q and the other featuring a 1 s time resolution in the energy range 13–50 eV/q. Comparing measurements made with the two modes, it was concluded that 4 s time resolution is enough to capture most of the fast changes of the cometary ion environment. The 1462 h of observations done with the 4 s mode were divided into hour-long sequences. It is possible to sort 84 per cent of these sequences into one of five categories, depending on their appearance in an energy–time spectrogram. The ion environment is generally highly dynamic, and variations in ion fluxes and energies are seen on time-scales of 10 s to several minutes

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described
    corecore