283 research outputs found

    Identification of Thymosin β4 as an effector of Hand1-mediated vascular development

    Get PDF
    The bHLH transcription factor Hand1 (Heart and neural crest-derived transcript-1) has a fundamental role in cardiovascular development; however, the molecular mechanisms have not been elucidated. In this paper we identify Thymosin β4 (Tβ4/Tmsb4x), which encodes an actin monomer-binding protein implicated in cell migration and angiogenesis, as a direct target of Hand1. We demonstrate that Hand1 binds an upstream regulatory region proximal to the promoter of Tβ4 at consensus Thing1 and E-Box sites and identify both activation and repression of Tβ4 by Hand1, through direct binding within either non-canonical or canonical E-boxes, providing new insight into gene regulation by bHLH transcription factors. Hand1-mediated activation of Tβ4 is essential for yolk sac vasculogenesis and embryonic survival, and administration of synthetic TB4 partially rescues yolk sac capillary plexus formation in Hand1-null embryos. Thus, we identify an in vivo downstream target of Hand1 and reveal impaired yolk sac vasculogenesis as a primary cause of early embryonic lethality following loss of this critical bHLH factor

    Transcriptional regulators of arteriovenous identity in the developing mammalian embryo

    Get PDF
    The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process

    Psychosocial impact of alternative management policies for low-grade cervical abnormalities : results from the TOMBOLA randomised controlled trial

    Get PDF
    Background: Large numbers of women who participate in cervical screening require follow-up for minor cytological abnormalities. Little is known about the psychological consequences of alternative management policies for these women. We compared, over 30-months, psychosocial outcomes of two policies: cytological surveillance (repeat cervical cytology tests in primary care) and a hospital-based colposcopy examination. Methods: Women attending for a routine cytology test within the UK NHS Cervical Screening Programmes were eligible to participate. 3399 women, aged 20–59 years, with low-grade abnormal cytology, were randomised to cytological surveillance (six-monthly tests; n = 1703) or initial colposcopy with biopsies and/or subsequent treatment based on colposcopic and histological findings (n = 1696). At 12, 18, 24 and 30-months post-recruitment, women completed the Hospital Anxiety and Depression Scale (HADS). A subgroup (n = 2354) completed the Impact of Event Scale (IES) six weeks after the colposcopy episode or first surveillance cytology test. Primary outcomes were percentages over the entire follow-up period of significant depression (≥8) and significant anxiety (≥11; “30-month percentages”). Secondary outcomes were point prevalences of significant depression, significant anxiety and procedure-related distress (≥9). Outcomes were compared between arms by calculating fully-adjusted odds ratios (ORs) for initial colposcopy versus cytological surveillance. Results: There was no significant difference in 30-month percentages of significant depression (OR = 0.99, 95% CI 0.80–1.21) or anxiety (OR = 0.97, 95% CI 0.81–1.16) between arms. At the six-week assessment, anxiety and distress, but not depression, were significantly less common in the initial colposcopy arm (anxiety: 7.9% vs 13.4%; OR = 0.55, 95% CI 0.38–0.81; distress: 30.6% vs 39.3%, OR = 0.67 95% CI 0.54–0.84). Neither anxiety nor depression differed between arms at subsequent time-points. Conclusions: There was no difference in the longer-term psychosocial impact of management policies based on cytological surveillance or initial colposcopy. Policy-makers, clinicians, and women themselves can be reassured that neither management policy has a significantly greater psychosocial cost

    Exercise-based cardiac rehabilitation improves exercise capacity and health-related quality of life in people with atrial fibrillation: a systematic review and meta-analysis of randomised and non-randomised trials

    Get PDF
    Objective: The aim of this study was to undertake a contemporary review of the impact of exercise-based cardiac rehabilitation (CR) targeted at patients with atrial fibrillation (AF). Methods: We conducted searches of PubMED, EMBASE and the Cochrane Library of Controlled Trials (up until 30 November 2017) using key terms related to exercise-based CR and AF. Randomised and non-randomised controlled trials were included if they compared the effects of an exercise-based CR intervention to a no exercise or usual care control group. Meta-analyses of outcomes were conducted where appropriate. Results: The nine randomised trials included 959 (483 exercise-based CR vs 476 controls) patients with various types of AF. Compared with control, pooled analysis showed no difference in all-cause mortality (risk ratio (RR) 1.08, 95% CI 0.77 to 1.53, p=0.64) following exercise-based CR. However, there were improvements in health-related quality of life (mean SF-36 mental component score (MCS): 4.00, 95% CI 0.26 to 7.74; p=0.04 and mean SF-36 physical component score: 1.82, 95% CI 0.06 to 3.59; p=0.04) and exercise capacity (mean peak VO2: 1.59 ml/kg/min, 95% CI 0.11 to 3.08; p=0.04; mean 6 min walk test: 46.9 m, 95% CI 26.4 to 67.4; p<0.001) with exercise-based CR. Improvements were also seen in AF symptom burden and markers of cardiac function. Conclusions: Exercise capacity, cardiac function, symptom burden and health-related quality of life were improved with exercise-based CR in the short term (up to 6 months) targeted at patients with AF. However, high-quality multicentre randomised trials are needed to clarify the impact of exercise-based CR on key patient and health system outcomes (including health-related quality of life, mortality, hospitalisation and costs) and how these effects may vary across AF subtypes

    Mapping the developing human cardiac endothelium at single cell resolution identifies MECOM as a regulator of arteriovenous gene expression

    Get PDF
    AIMS: Coronary vasculature formation is a critical event during cardiac development, essential for heart function throughout perinatal and adult life. However, current understanding of coronary vascular development has largely been derived from transgenic mouse models. The aim of this study was to characterize the transcriptome of the human foetal cardiac endothelium using single-cell RNA sequencing (scRNA-seq) to provide critical new insights into the cellular heterogeneity and transcriptional dynamics that underpin endothelial specification within the vasculature of the developing heart. METHODS AND RESULTS: We acquired scRNA-seq data of over 10 000 foetal cardiac endothelial cells (ECs), revealing divergent EC subtypes including endocardial, capillary, venous, arterial, and lymphatic populations. Gene regulatory network analyses predicted roles for SMAD1 and MECOM in determining the identity of capillary and arterial populations, respectively. Trajectory inference analysis suggested an endocardial contribution to the coronary vasculature and subsequent arterialization of capillary endothelium accompanied by increasing MECOM expression. Comparative analysis of equivalent data from murine cardiac development demonstrated that transcriptional signatures defining endothelial subpopulations are largely conserved between human and mouse. Comprehensive characterization of the transcriptional response to MECOM knockdown in human embryonic stem cell-derived EC (hESC-EC) demonstrated an increase in the expression of non-arterial markers, including those enriched in venous EC. CONCLUSIONS: scRNA-seq of the human foetal cardiac endothelium identified distinct EC populations. A predicted endocardial contribution to the developing coronary vasculature was identified, as well as subsequent arterial specification of capillary EC. Loss of MECOM in hESC-EC increased expression of non-arterial markers, suggesting a role in maintaining arterial EC identity

    Human coronary microvascular contractile dysfunction associates with viable synthetic smooth muscle cells

    Get PDF
    Aims Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. Methods and results Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. Conclusion These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction

    Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin β4 knockout mice

    Get PDF
    Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the aetiology and treatment. We sought to determine whether Thymosin β4 (Tβ4), a peptide that regulates the availability of actin monomers for polymerization in non-muscle cells, plays a role in sarcomere assembly during cardiac morphogenesis and influences adult cardiac function. In Tβ4 null mice, immunofluorescence-based sarcomere analyses revealed shortened thin filament, sarcomere and titin spring length in cardiomyocytes, associated with precocious up-regulation of the short titin isoforms during the postnatal splicing transition. By magnetic resonance imaging, this manifested as diminished stroke volume and limited contractile reserve in adult mice. Extrapolating to an in vitro cardiomyocyte model, the altered postnatal splicing was corrected with addition of synthetic Tβ4, whereby normal sarcomere length was restored. Our data suggest that Tβ4 is required for setting correct sarcomere length and for appropriate splicing of titin, not only in the heart but also in skeletal muscle. Distinguishing between thin filament extension and titin splicing as the primary defect is challenging, as these events are intimately linked. The regulation of titin splicing is a previously unrecognised role of Tβ4 and gives preliminary insight into a mechanism by which titin isoforms may be manipulated to correct cardiac dysfunction
    corecore