8 research outputs found

    Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health.

    No full text
    Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease

    Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite.

    Full text link
    Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterised a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3% and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low rate mutation process that causes copy number change of part or all of the duplicon

    Telomere maintenance in soft tissue sarcomas.

    No full text
    Soft tissue sarcomas (STS) are a diverse group of heterogeneous malignant tumours derived from mesenchymal tissues. Over 50 different STS subtypes are recognised by WHO, which show a wide range of different biological behaviours and prognoses. At present, clinicians managing this complex group of tumours face several challenges. This is reflected by the relatively poor outcome of patients with STSs compared with many other solid malignant tumours. These include difficulties securing accurate diagnoses, a lack of effective systemic treatments and absence of any sensitive circulating biomarkers to monitor patients throughout their treatment and follow-up. In order to progress STS's cells must evade the usual cellular proliferative checkpoints, and then activate a telomere maintenance mechanism in order to achieve replicative immortality. The purpose of this review is to provide an overview of STS genetics focusing particularly on these mechanisms. We will also highlight some of the key barriers to improving outcome for patients with STS, and hypothesise how a better understanding of these genetic characteristics may impact on future STS management

    Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G¡C¡G¡C tetrad

    Full text link
    Short contiguous arrays of variant CTAGGG repeats in the human telomere are unstable in the male germline and somatic cells, suggesting formation of unusual structures by this repeat type. Here, we report on the structure of an intramolecular G-quadruplex formed by DNA sequences containing four human telomeric variant CTAGGG repeats in potassium solution. Our results reveal a new robust antiparallel G-quadruplex fold involving two G-tetrads sandwiched between a G¡C base pair and a G¡C¡G¡C tetrad, which could represent a new platform for drug design targeted to human telomeric DNA

    Human RAP1 specifically protects telomeres of senescent cells from DNA damage

    No full text
    Repressor/activator protein 1 (RAP1) is a highly evolutionarily conserved protein found at telomeres. Although yeast Rap1 is a key telomere capping protein preventing non‐homologous end joining (NHEJ) and consequently telomere fusions, its role at mammalian telomeres in vivo is still controversial. Here, we demonstrate that RAP1 is required to protect telomeres in replicative senescent human cells. Downregulation of RAP1 in these cells, but not in young or dividing pre‐senescent cells, leads to telomere uncapping and fusions. The anti‐fusion effect of RAP1 was further explored in a HeLa cell line where RAP1 expression was depleted through an inducible CRISPR/Cas9 strategy. Depletion of RAP1 in these cells gives rise to telomere fusions only when telomerase is inhibited. We further show that the fusions triggered by RAP1 loss are dependent upon DNA ligase IV. We conclude that human RAP1 is specifically involved in protecting critically short telomeres. This has important implications for the functions of telomeres in senescent cells

    Biological Ageing Effect of Radiotherapy in Breast Cancer

    Full text link
    The ability of peripheral blood lymphocytes to undergo radiation-induced apoptosis in vitro usually falls by only 0.5% per year. In a recent study, it has been found that in vitro apoptotic response to ionising radiation in peripheral blood lymphocytes fell by 15% in 12 breast cancer patients when repeated one year post radiotherapy (Docherty et al, 2007). This is equivalent to 30 years of biological ageing over a one year period post irradiation. Our hypothesis is that the decrease in peripheral blood lymphocytes ability to undergo apoptosis is a result of irradiation-induced biological ageing. This project aims to validate proposed in vitro markers of biological ageing in peripheral blood lymphocytes (including global genomic Methylation by High Performance Liquid Chromatography analysis and Telomere Lengths using Single Telomere Length Analysis and Telomere Restriction Fragment analysis) and radiosensitivity assays (including radiation-induced apoptotic response via Sub-G1 and Annexin V/FITC assays, and DNA Single Strand Break & Double Strand Break formation and repair via Comet and gamma-H2AX assays). We plan to investigate these observations within a larger breast cancer patient and control cohort to investigate the cause of biological ageing. It is hoped that these assays could be used to predict response to treatment/complications or prognosis, or to determine the effectiveness of bio-preventative agents in the future

    Circulating tumour-derived DNA in metastatic soft tissue sarcoma.

    Full text link
    Following treatment 40% of soft tissue sarcoma (STS) patients suffer disease recurrence. In certain cancers circulating cell free DNA (cfDNA) and circulating tumour-derived DNA (ctDNA) characteristics correlate closely with disease burden, making them exciting potential sources of biomarkers. Despite this, the circulating nucleic acid characteristics of only 2 STS patients have been reported to date. To address this we used an Ion AmpliSeq™ panel custom specifically designed for STS patients to conduct a genetic characterisation of plasma cfDNA, buffy coat (germline) DNA and where available Formalin-Fixed Paraffin-Embedded (FFPE) primary STS tissue DNA in a cohort of 11 metastatic STS patients. We found that total cfDNA levels were significantly elevated in the STS patients analysed, and weakly correlated with disease burden. Using our Ion AmpliSeq™ panel we also successfully detected ctDNA in 4/11 (36%) patients analysed with a wide variety of STS subtypes and disease burdens. This evidence included the presence of cancer associated TP53 / PIK3CA mutations in 2 patients' plasma and matched primary STS tumour tissue, and in the plasma alone for 2 patients. We also identified 2 potential examples of allelic loss of heterozygosity in an additional patient's STS DNA and cfDNA. This is the largest study performed characterising STS patient cfDNA/ctDNA and confirms that the field remains an attractive potential source of novel STS biomarkers. Further work is required to investigate the circulating nucleic acid characteristics of individual STS subtypes, and the potential prognostic or therapeutic roles that cfDNA/ctDNA may hold for patients with these complex tumours

    HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q

    Get PDF
    Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers
    corecore