9 research outputs found

    A New Photoactivatable Ruthenium(II) Complex with an Asymmetric Bis-Thiocarbohydrazone: Chemical and Biological Investigations

    Get PDF
    The synthesis, photoactivation and biological activity of a new piano-stool Ru(II) complex is herein reported. The peculiarity of this complex is that its monodentate ligand which undergoes the photodissociation is an asymmetric bis-thiocarbohydrazone ligand that possesses a pyridine moiety binding to Ru(II) and the other moiety contains a quinoline that endows the ligand with the capacity of chelating other metal ions. In this way, upon dissociation, the ligand can be released in the form of a metal complex. In this article, the double ability of this new Ru(II) complex to photorelease the ligand and to chelate copper and nickel is explored and confirmed. The biological activity of this compound is studied in cell line A549 revealing that, after irradiation, proliferation inhibition is reached at very low half maximal inhibitory concentration (IC50) values. Further, biological assays reveal that the dinuclear complex containing Ni is internalized in cells

    Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues

    No full text
    The development of microbial antibiotic resistance has become one of the biggest threats to global health and the search for new molecules active against resistant pathogenic strains is a challenge that must be tackled. In many cases nosocomial infections are caused by bacteria characterized by multi-drug resistance patterns and by their ability to produce biofilms. These properties lead to the persistence of pathogens in the hospital environment. This paper reports the synthesis and characterization of three thiosemicarbazone derivatives based on a compound containing the cinnamaldehyde natural scaffold but possessing different logPow values. These molecules are then used as ligands to prepare complexes of the Cu(II) and Zn(II) ions. All these compounds, ligands and complexes, were screened in vitro on stains of Escherichia coli and Klebsiella pneumoniae for their antibacterial activity. Despite their molecular similarity they revealed variegated behaviors. Only two of them present interesting antimicrobial properties and have also been studied to verify their stability in solution. The compound with the lowest partition coefficient is the most promising. The minimal bactericidal concentration on K. pneumoniae and E. coli of these substances are very interesting and demonstrate that the use of metalloantibiotics is a promising device to fight antibiotic resistance

    Light Triggers the Antiproliferative Activity of Naphthalimide-Conjugated (η6-arene)ruthenium(II) Complexes

    No full text
    : We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η 6 -arene)Ru(N,N0 )L][PF6 ]2 containing arene = p-cymene, N,N0 = bipyridine, and L = pyridine metawith methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)na -phthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 µM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT

    Light triggers the antiproliferative activity of naphthalimide-conjugated (η

    Get PDF
    We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η -arene)Ru(N,N')L][PF ] containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λ = 418 nm) compared with C1 and C2 (λ = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC = 10.55 ± 0.30 μM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT)

    Sabotage at the Powerhouse? Unraveling the Molecular Target of 2-Isopropylbenzaldehyde Thiosemicarbazone, a Specific Inhibitor of Aflatoxin Biosynthesis and Sclerotia Development in Aspergillus flavus, Using Yeast as a Model System

    No full text
    Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain

    Double Gamers—Can Modified Natural Regulators of Higher Plants Act as Antagonists against Phytopathogens? The Case of Jasmonic Acid Derivatives

    No full text
    As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi
    corecore