210 research outputs found
A pyrrole-imidazole polyamide is active against enzalutamide-resistant prostate cancer
The LREX' prostate cancer model is resistant to the antiandrogen enzalutamide via activation of an alternative nuclear hormone receptor (NHR), glucocorticoid receptor (GR), which has similar DNA binding specificity to the androgen receptor (AR). Small molecules that target DNA to interfere with protein-DNA interactions may retain activity against enzalutamide-resistant prostate cancers where ligand binding domain antagonists are ineffective. We reported previously that a pyrrole-imidazole (Py-Im) polyamide designed to bind the consensus androgen response element half-site has antitumor activity against hormone-sensitive prostate cancer. In enzalutamide-resistant LREX' cells, Py-Im polyamide interfered with both androgen receptor- and glucocorticoid receptor-driven gene expression, while enzalutamide interfered with only that of androgen receptor. Genomic analyses indicated immediate interference with the androgen receptor transcriptional pathway. Long-term treatment with Py-Im polyamide demonstrated a global decrease in RNA levels consistent with inhibition of transcription. The polyamide was active against two enzalutamide-resistant xenografts with minimal toxicity. Overall, our results identify Py-Im polyamide as a promising therapeutic strategy in enzalutamide-resistant prostate cancer
Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide
Gene regulation by DNA binding small molecules could have important therapeutic applications. This study reports the investigation of a DNA-binding pyrrole-imidazole polyamide targeted to bind the DNA sequence 5â˛-WGGWWW-3Ⲡwith reference to its potency in a subcutaneous xenograft tumor model. The molecule is capable of trafficking to the tumor site following subcutaneous injection and modulates transcription of select genes in vivo. An FITC-labeled analogue of this polyamide can be detected in tumor-derived cells by confocal microscopy. RNA deep sequencing (RNA-seq) of tumor tissue allowed the identification of further affected genes, a representative panel of which was interrogated by quantitative reverse transcription-PCR and correlated with cell culture expression levels
Activity of a PyâIm Polyamide Targeted to the Estrogen Response Element
Pyrrole-imidazole (PyâIm) polyamides are a class of programmable DNA minor groove binders capable of modulating the activity of DNA-binding proteins and affecting changes in gene expression. Estrogen receptor alpha (ERÎą) is a ligand-activated hormone receptor that binds as a homodimer to estrogen response elements (ERE) and is a driving oncogene in a majority of breast cancers. We tested a selection of structurally similar PyâIm polyamides with differing DNA sequence specificity for activity against 17β-estadiol (E2)âinduced transcription and cytotoxicity in ERÎą positive, E2-stimulated T47DKBluc cells, which express luciferase under ERÎą control. The most active polyamide targeted the sequence 5â˛-WGGWCW-3Ⲡ(W = A or T), which is the canonical ERE half site. Whole transcriptome analysis using RNA-Seq revealed that treatment of E2-stimulated breast cancer cells with this polyamide reduced the effects of E2 on the majority of those most strongly affected by E2 but had much less effect on the majority of E2-induced transcripts. In vivo, this polyamide circulated at detectable levels following subcutaneous injection and reduced levels of ER-driven luciferase expression in xenografted tumors in mice after subcutaneous compound administration without significant host toxicity
Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA
A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules
Interference with DNA repair after ionizing radiation by a pyrrole-imidazole polyamide
Pyrrole-imidazole (PyâIm) polyamides are synthetic non-genotoxic minor groove-binding small molecules. We hypothesized that PyâIm polyamides can modulate the cellular response to ionizing radiation. Pre-treatment of cells with a Py-Im polyamide prior to exposure to ionizing radiation resulted in a delay in resolution of phosphorylated Îł-H2AX foci, increase in XRCC1 foci, and reduced cellular replication potential. RNA-sequencing of cell lines exposed to the polyamide showed induction of genes related to the ultraviolet radiation response. We observed that the polyamide is almost 10-fold more toxic to a cell line deficient in DNA ligase 3 as compared to the parental cell line. Alkaline single cell gel electrophoresis reveals that the polyamide induces genomic fragmentation in the ligase 3 deficient cell line but not the corresponding parental line. The polyamide interferes directly with DNA ligation in vitro. We conclude that Py-Im polyamides may be further explored as sensitizers to genotoxic therapies
Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression
The glucocorticoid receptor (GR) affects the transcription of genes involved in diverse processes, including energy metabolism and the immune response, through DNA-binding dependent and independent mechanisms. The DNA-binding dependent mechanism occurs by direct binding of GR to glucocorticoid response elements (GREs) at regulatory regions of target genes. The DNA-binding independent mechanism involves binding of GR to transcription factors and coactivators that, in turn, contact DNA. A small molecule that competes with GR for binding to GREs could be expected to affect the DNA-dependent pathway selectively by interfering with the protein-DNA interface. We show that a DNA-binding polyamide that targets the consensus GRE sequence binds the glucocorticoid-induced zipper (GILZ) GRE, inhibits expression of GILZ and several other known GR target genes, and reduces GR occupancy at the GILZ promoter. Genome-wide expression analysis of the effects of this polyamide on a set of glucocorticoid-induced and -repressed genes could help to elucidate the mechanism of GR regulation for these genes
Commercials, careers and culture: travelling salesmen in Britain 1890s-1930s
Within the lower middle-class, British commercial travellers established a strong fraternal culture before 1914. This article examines their interwar experiences in terms of income, careers, and associational culture. It demonstrates how internal labour markets operated, identifies the ways in which commercial travellers interpreted their role, and explores their social and political attitudes
- âŚ