550 research outputs found
Efficient transduction of primary vascular cells by the rare adenovirus serotype 49 vector
Neointima formation and vascular remodelling through vascular smooth muscle cell migration and proliferation can limit the long term success of coronary interventions, for example in coronary artery bypass grafting (CABG). Ex vivo gene therapy has the potential to reduce unnecessary cell proliferation and limit neointima formation in vascular pathologies. To date the species C adenovirus serotype 5 (Ad5) has been commonly used for pre-clinical gene therapy, however its suitability is potentially limited by relatively poor tropism for vascular cells and high levels of pre-existing immunity in the population. To avoid these limitations, novel species of adenovirus are being tested; here we investigate the potential of adenovirus 49 (Ad49) for use in gene therapy. Transduction of primary human vascular cells by a range of adenovirus serotypes was assessed; Ad49 demonstrated highest transduction of both vascular smooth muscle and endothelial cells. Gene transfer with Ad49 in vascular smooth muscle and endothelial cells was possible following short exposure times (*lt;1hr) and with low MOI which is clinically relevant. Ex vivo delivery to surplus CABG tissue showed efficient gene transfer with Ad49, consistent with the in vitro findings. Luminal infusion of Ad49GFP into intact CABG samples ex vivo resulted in efficient vessel transduction. In addition, no seroprevelance rates to Ad49 were observed in a Scottish cohort of patients from cardiovascular clinics, thus circumventing issues with pre-existing immunity. Our results show Ad49 has tropism for vascular cells in vitro and ex vivo and demonstrate Ad49 may be an improved vector for local vascular gene therapy compared to current alternatives
Extracellular vesicle signalling in atherosclerosis
Atherosclerosis is a major cardiovascular disease and in 2016, the World Health Organisation (WHO) estimated 17.5 million global deaths, corresponding to 31% of all global deaths, were driven by inflammation and deposition of lipids into the arterial wall. This leads to the development of plaques which narrow the vessel lumen, particularly in the coronary and carotid arteries. Atherosclerotic plaques can become unstable and rupture, leading to myocardial infarction or stroke. Extracellular vesicles (EVs) are a heterogeneous population of vesicles secreted from cells with a wide range of biological functions. EVs participate in cell-cell communication and signalling via transport of cargo including enzymes, DNA, RNA and microRNA in both physiological and patholophysiological settings. EVs are present in atherosclerotic plaques and have been implicated in cellular signalling processes in atherosclerosis development, including immune responses, inflammation, cell proliferation and migration, cell death and vascular remodeling during progression of the disease. In this review, we summarise the current knowledge regarding EV signalling in atherosclerosis progression and the potential of utilising EV signatures as biomarkers of disease
Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xpLA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization
Bacteriocins contributing in Rhizospheric competition among Fluorescent Pseudomonads
Aims: To examine the production of bacteriocins through the study of a group of rhizospheric Pseudomonas isolates already known to produce metabolites that are antagonistic to fungi.
Methodology: Fourteen rhizospheric strains of fluorescent Pseudomonads spp., were tested as well as two referenced strains Pseudomonas protogens CHA0 and Pseudomonas aureofaciens 30-84, for their ability to produce induced bacteriocins. The induction is carried out first by UV light, and secondly by mitomycin C.
Results: In addition to the reference strains, six isolates were found to produce bactericidal substances after UV light induction against Pseudomonas target bacteria but also against other genera (Escherichia and Staphylococcus). Producing strains were treated with mitomycin C, and then lysed with chloroform. Analysis of the lysates by trypsin and freezing treatments, suggests that the active compounds are of high molecular weight.
Conclusion: It is therefore suggested that these bacteria could be good competitors for their introduction as biocontrol agents
GPR35 as a Novel Therapeutic Target
G protein-coupled receptors (GPCRs) remain the best studied class of cell surface receptors and the most tractable family of proteins for novel small molecule drug discovery. Despite this, a considerable number of GPCRs remain poorly characterized and in a significant number of cases, endogenous ligand(s) that activate them remain undefined or are of questionable physiological relevance. GPR35 was initially discovered over a decade ago but has remained an āorphanā receptor. Recent publications have highlighted novel ligands, both endogenously produced and synthetic, which demonstrate significant potency at this receptor. Furthermore, evidence is accumulating which highlights potential roles for GPR35 in disease and therefore, efforts to characterize GPR35 more fully and develop it as a novel therapeutic target in conditions that range from diabetes and hypertension to asthma are increasing. Recently identified ligands have shown marked species selective properties, indicating major challenges for future drug development. As we begin to understand these issues, the continuing efforts to identify novel agonist and antagonist ligands for GPR35 will help to decipher its true physiological relevance; translating multiple assay systems in vitro, to animal disease systems in vivo and finally to man
Manipulating adenovirus hexon hypervariable loops dictates immune neutralisation and coagulation factor X-dependent cell interaction in vitro and in vivo
Adenoviruses are common pathogens, mostly targeting ocular, gastrointestinal and respiratory cells, but in some cases infection disseminates, presenting in severe clinical outcomes. Upon dissemination and contact with blood, coagulation factor X (FX) interacts directly with the adenovirus type 5 (Ad5) hexon. FX can act as a bridge to bind heparan sulphate proteoglycans, leading to substantial Ad5 hepatocyte uptake. FX ācoatingā also protects the virus from host IgM and complement-mediated neutralisation. However, the contribution of FX in determining Ad liver transduction whilst simultaneously shielding the virus from immune attack remains unclear. In this study, we demonstrate that the FX protection mechanism is not conserved amongst Ad types, and identify the hexon hypervariable regions (HVR) of Ad5 as the capsid proteins targeted by this host defense pathway. Using genetic and pharmacological approaches, we manipulate Ad5 HVR interactions to interrogate the interplay between viral cell transduction and immune neutralisation. We show that FX and inhibitory serum components can co-compete and virus neutralisation is influenced by both the location and extent of modifications to the Ad5 HVRs. We engineered Ad5-derived HVRs into the rare, native non FX-binding Ad26 to create Ad26.HVR5C. This enabled the virus to interact with FX at high affinity, as quantified by surface plasmon resonance, FX-mediated cell binding and transduction assays. Concomitantly, Ad26.HVR5C was also sensitised to immune attack in the absence of FX, a direct consequence of the engineered HVRs from Ad5. In both immune competent and deficient animals, Ad26.HVR5C hepatic gene transfer was mediated by FX following intravenous delivery. This study gives mechanistic insight into the pivotal role of the Ad5 HVRs in conferring sensitivity to virus neutralisation by IgM and classical complement-mediated attack. Furthermore, through this gain-of-function approach we demonstrate the dual functionality of FX in protecting Ad26.HVR5C against innate immune factors whilst determining liver targeting
First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches
We present first evidence for the so-called Head-Tail asymmetry signature of
neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the
1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils
induced by Weakly Interacting Massive Particle (WIMPs) but one where the
differential ionization is poorly understood. We show that the distribution of
recoil energies and directions induced here by Cf-252 neutrons matches well
that expected from massive WIMPs. The results open a powerful new means of
searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl
Onset of experimental severe cardiac fibrosis is mediated by overexpression of angiotensin-converting enzyme 2
Angiotensin-converting enzyme (ACE) 2 is a recently identified homologue of ACE. There is great interest in the therapeutic benefit for ACE2 overexpression in the heart. However, the role of ACE2 in the regulation of cardiac structure and function, as well as maintenance of systemic blood pressure, remains poorly understood. In cell culture, ACE2 overexpression led to markedly increased myocyte volume, assessed in primary rabbit myocytes. To assess ACE2 function in vivo, we used a recombinant adeno-associated virus 6 delivery system to provide 11-week overexpression of ACE2 in the myocardium of stroke-prone spontaneously hypertensive rats. ACE2, as well as the ACE inhibitor enalapril, significantly reduced systolic blood pressure. However, in the heart, ACE2 overexpression resulted in cardiac fibrosis, as assessed by histological analysis with concomitant deficits in ejection fraction and fractional shortening measured by echocardiography. Furthermore, global gene expression profiling demonstrated the activation of profibrotic pathways in the heart mediated by ACE2 gene delivery. This study demonstrates that sustained overexpression of ACE2 in the heart in vivo leads to the onset of severe fibrosis
Gene therapy with Angiotensin-(1-9) preserves left ventricular systolic function after myocardial infarction
BACKGROUND: Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin angiotensin system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic minipump in mice. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI).
OBJECTIVES: To evaluate effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post infarction.
METHODS: C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular (LV) pressure-volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitationācontraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff perfused whole heart model.
RESULTS: Gene delivery of Ang-(1-9) significantly reduced sudden cardiac death post-MI. Pressureāvolume measurements revealed complete restoration of end systolic pressure, ejection fraction, end systolic volume and the end diastolic pressureāvolume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and increasing contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A-dependent mechanism.
CONCLUSIONS: Our novel findings show that Ang-(1-9) gene therapy preserves LV systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) has a direct effect on cardiomyocyte
3
calcium handling through a protein kinase A-dependent mechanism. These data highlight Ang-(1-9) gene therapy as a potential new strategy in the context of MI
- ā¦