1,207 research outputs found

    Radiation of a circulating quark in strongly coupled N=4 super Yang-Mills theory

    Get PDF
    The energy density and angular distribution of power radiated by a quark undergoing circular motion in strongly coupled N=4{\cal N}=4 supersymmetric Yang-Mills (SYM) theory is computed using gauge/gravity duality. The results are qualitatively similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: At large velocities the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle α∼1/γ\alpha \sim 1/\gamma and radial thickness scaling like ∼1/γ3\sim 1/\gamma^3.Comment: 8 pages, 2 figures - Talk presented by D. Nickel at QCD@Work, June 20-23rd, 2010, Martina Franca, Ital

    Student Recital

    Get PDF

    Student Recital

    Get PDF

    Synchrotron radiation in strongly coupled conformal field theories

    Full text link
    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4{\cal N}=4 supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, and find the same angular distribution of radiated power, up to an overall prefactor. In both regimes, the angular distribution is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle α∼1/γ\alpha \sim 1/\gamma. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.Comment: 20 pages, 8 figures. v2: published version. v4: factor-of-two error corrected in the time-averaged angular distribution of the power radiated in scalars in weak coupling N=4 SYM theory; correcting this error has interesting ramification

    Brain oscillations differentially encode noxious stimulus intensity and pain intensity

    Get PDF
    Noxious stimuli induce physiological processes which commonly translate into pain. However, under certain conditions, pain intensity can substantially dissociate from stimulus intensity, e.g. during longer-lasting pain in chronic pain syndromes. How stimulus intensity and pain intensity are differentially represented in the human brain is, however, not yet fully understood. We therefore used electroencephalography (EEG) to investigate the cerebral representation of noxious stimulus intensity and pain intensity during 10 min of painful heat stimulation in 39 healthy human participants. Time courses of objective stimulus intensity and subjective pain ratings indicated a dissociation of both measures. EEG data showed that stimulus intensity was encoded by decreases of neuronal oscillations at alpha and beta frequencies in sensorimotor areas. In contrast, pain intensity was encoded by gamma oscillations in the medial prefrontal cortex. Contrasting right versus left hand stimulation revealed that the encoding of stimulus intensity in contralateral sensorimotor areas depended on the stimulation side. In contrast, a conjunction analysis of right and left hand stimulation revealed that the encoding of pain in the medial prefrontal cortex was independent of the side of stimulation. Thus, the translation of noxious stimulus intensity into pain is associated with a change from a spatially specific representation of stimulus intensity by alpha and beta oscillations in sensorimotor areas to a spatially independent representation of pain by gamma oscillations in brain areas related to cognitive and affective-motivational processes. These findings extend the understanding of the brain mechanisms of nociception and pain and their dissociations during longer-lasting pain as a key symptom of chronic pain syndromes

    Prefrontal gamma oscillations encode tonic pain in humans

    Get PDF
    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain

    Landings, vol. 31, no. 8

    Get PDF
    Landings content emphasizes science, history, resource sustainability, economic development, and human interest stories related to Maine\u27s lobster industry. The newsletter emphasizes lobstering as a traditional, majority-European American lifeway with an economic and social heritage unique to the coast of Maine. The publication focuses how ongoing research to engage in sustainable, non-harmful, and non-wasteful commercial fishing practices benefit both the fishery and Maine\u27s coastal legacy. For more information, please visit the Maine Lobstermen’s Community Alliance (MLCA) website

    Systematic review of clinical practice guidelines recommendations about primary cardiovascular disease prevention for older adults

    Get PDF
    Background: Clinical care for older adults is complex and represents a growing problem. They are a diverse patient group with varying needs, frequent presence of multiple comorbidities, and are more susceptible to treatment harms. Thus Clinical Practice Guidelines (CPGs) need to carefully consider older adults in order to guide clinicians. We reviewed CPG recommendations for primary cardiovascular disease (CVD) prevention and examined the extent to which CPGs address issues important for older people identified in the literature. Methods: We searched: 1) two systematic reviews on CPGs for CVD prevention and 2) the National CPG Clearinghouse, G-I-N International CPG Library and Trip databases for CPGs for CVD prevention, hypertension and cholesterol. We conducted our search between April and December 2013. We excluded CPGs for diabetes, chronic kidney disease, HIV, lifestyle, general screening/prevention, and pregnant or pediatric populations. Three authors independently screened citations for inclusion and extracted data. The primary outcomes were presence and extent of recommendations for older people including discussion of: (1) available evidence, (2) barriers to implementation of the CPG, and (3) tailoring management for this group. Results: We found 47 eligible CPGs. There was no mention of older people in 4 (9 %) of the CPGs. Benefits were discussed more frequently than harms. Twenty-three CPGs (49 %) discussed evidence about potential benefits and 18 (38 %) discussed potential harms of CVD prevention in older people. Most CPGs addressed one or more barriers to implementation, often as a short statement. Although 27 CPGs (58 %) mentioned tailoring management to the older patient context (e.g. comorbidities), concrete guidance was rare. Conclusion: Although most CVD prevention CPGs mention the older population to some extent, the information provided is vague and very limited. Older adults represent a growing proportion of the population. Guideline developers must ensure they consider older patients’ needs and provide appropriate advice to clinicians in order to support high quality care for this group. CPGs should at a minimum address the available evidence about CVD prevention for older people, and acknowledge the importance of patient involvement.NHMR
    • …
    corecore