16 research outputs found

    Neural Antecedents of the Endowment Effect

    Get PDF
    The “endowment effect” refers to the tendency to place greater value on items that one owns—an anomaly that violates the reference-independence assumption of rational choice theories. We investigated neural antecedents of the endowment effect in an event-related functional magnetic resonance imaging (fMRI) study. During scanning, 24 subjects considered six products paired with 18 different prices under buying, choosing, or selling conditions. Subjects showed greater nucleus accumbens (NAcc) activation for preferred products across buy and sell conditions combined, but greater mesial prefrontal cortex (MPFC) activation in response to low prices when buying versus selling. During selling, right insular activation for preferred products predicted individual differences in susceptibility to the endowment effect. These findings are consistent with a reference-dependent account in which ownership increases value by enhancing the salience of the possible loss of preferred products. Author Keyword

    Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive.

    Get PDF
    Stressors motivate an array of adaptive responses ranging from \u27fight or flight\u27 to an internal urgency signal facilitating long-term goals. However, traumatic or chronic uncontrollable stress promotes the onset of major depressive disorder, in which acute stressors lose their motivational properties and are perceived as insurmountable impediments. Consequently, stress-induced depression is a debilitating human condition characterized by an affective shift from engagement of the environment to withdrawal. An emerging neurobiological substrate of depression and associated pathology is the nucleus accumbens, a region with the capacity to mediate a diverse range of stress responses by interfacing limbic, cognitive and motor circuitry. Here we report that corticotropin-releasing factor (CRF), a neuropeptide released in response to acute stressors and other arousing environmental stimuli, acts in the nucleus accumbens of naive mice to increase dopamine release through coactivation of the receptors CRFR1 and CRFR2. Remarkably, severe-stress exposure completely abolished this effect without recovery for at least 90 days. This loss of CRF\u27s capacity to regulate dopamine release in the nucleus accumbens is accompanied by a switch in the reaction to CRF from appetitive to aversive, indicating a diametric change in the emotional response to acute stressors. Thus, the current findings offer a biological substrate for the switch in affect which is central to stress-induced depressive disorders

    Nigrostriatal dopamine signals sequence-specific action-outcome prediction errors

    No full text
    Dopamine has been suggested to encode cue-reward prediction errors during Pavlovian conditioning, signaling discrepancies between actual versus expected reward predicted by the cues.(1-5) While this theory has been widely applied to reinforcement learning concerning instrumental actions, whether dopamine represents action-outcome prediction errors and how it controls sequential behavior remain largely unknown. The vast majority of previous studies examining dopamine responses primarily have used discrete reward-predictive stimuli,(1-15) whether Pavlovian conditioned stimuli for which no action is required to earn reward or explicit discriminative stimuli that essentially instruct an animal how and when to respond for reward. Here, by training mice to perform optogenetic intracranial self-stimulation, we examined how self-initiated goal-directed behavior influences nigrostriatal dopamine transmission during single and sequential instrumental actions, in behavioral contexts with minimal overt changes in the animal\u27s external environment. We found that dopamine release evoked by direct optogenetic stimulation was dramatically reduced when delivered as the consequence of the animal\u27s own action, relative to non-contingent passive stimulation. This dopamine suppression generalized to food rewards was specific to the reinforced action, was temporally restricted to counteract the expected outcome, and exhibited sequence-selectivity consistent with hierarchical control of sequential behavior. These findings demonstrate that nigrostriatal dopamine signals sequence-specific prediction errors in action-outcome associations, with fundamental implications for reinforcement learning and instrumental behavior in health and disease

    Interdependent self-construal and neural representations of self and mother

    No full text
    Representations of self are thought to be dynamically influenced by one's surroundings, including the culture one lives in. However, neuroimaging studies of self-representations have either ignored cultural influences or operationalized culture as country of origin. The present study used functional magnetic resonance imaging to examine the neural correlates of individual differences in interdependent self-construal. Participants rated whether trait adjectives applied to themselves or their mothers, or judged their valence or font. Findings indicated that individual differences in interdependent self-construal correlated positively with increased activation in the medial prefrontal cortex and posterior cingulated cortex when making judgments about one-self vs making judgments about one's mother. This suggests that those with greater interdependent self-construals may rely more upon episodic memory, reflected appraisals, or theory of mind to incorporate social information to make judgments about themselves

    Phasic dopamine release in the nucleus accumbens in response to pro-social 50 kHz ultrasonic vocalizations in rats

    No full text
    Rats emit ultrasonic vocalizations (USVs) that are thought to serve as situation-dependent affective signals and accomplish important communicative functions. In appetitive situations, rats produce 50 kHz USVs, whereas 22 kHz USVs occur in aversive situations. Reception of 50 kHz USVs induces social approach behavior, while 22 kHz USVs lead to freezing behavior. These opposite behavioral responses are paralleled by distinct brain activation patterns, with 50 kHz USVs, but not 22 kHz USVs, activating neurons in the nucleus accumbens (NAcc). The NAcc mediates appetitive behavior and is critically modulated by dopaminergic afferents that are known to encode the value of reward. Therefore, we hypothesized that 50 kHz USVs, but not 22 kHz USVs, elicit NAcc dopamine release. While recording dopamine signaling with fast-scan cyclic voltammetry, freely moving rats were exposed to playback of four acoustic stimuli via an ultrasonic speaker in random order: (1) 50 kHz USVs, (2) 22 kHz USVs, (3) time- and amplitude-matched white noise, and (4) background noise. Only presentation of 50 kHz USVs induced phasic dopamine release and elicited approach behavior toward the speaker. Both of these effects, neurochemical and behavioral, were most pronounced during initial playback, but then declined rapidly with subsequent presentations, indicating a close temporal relationship between the two measures. Moreover, the magnitudes of these effects during initial playback were significantly correlated. Collectively, our findings show that NAcc dopamine release encodes pro-social 50 kHz USVs, but not alarming 22 kHz USVs. Thus, our results support the hypothesis that these call types are processed in distinct neuroanatomical regions and establish a functional link between pro-social communicative signals and reward-related neurotransmissio

    VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release

    No full text
    Like ventral tegmental area (VTA) dopamine (DA) neurons, VTA glutamate neuron activity can support positive reinforcement. However, a subset of VTA neurons co-release DA and glutamate, and DA release might be responsible for behavioral reinforcement induced by VTA glutamate neuron activity. To test this, we used optogenetics to stimulate VTA glutamate neurons in which tyrosine hydroxylase (TH), and thus DA biosynthesis, was conditionally ablated using either floxed Th mice or viral-based CRISPR/Cas9. Both approaches led to loss of TH expression in VTA glutamate neurons and loss of DA release from their distal terminals in nucleus accumbens (NAc). Despite loss of the DA signal, optogenetic activation of VTA glutamate cell bodies or axon terminals in NAc was sufficient to support reinforcement. These results suggest that glutamate release from VTA is sufficient to promote reinforcement independent of concomitant DA co-release, establishing a non-DA mechanism by which VTA activity can support reward-seeking behaviors
    corecore