10,892 research outputs found
Insulin resistance for glucose metabolism in disused soleus muscle of mice
Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes
Systematic study of Optical Feshbach Resonances in an ideal gas
Using a narrow intercombination line in alkaline earth atoms to mitigate
large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect
in an ultracold gas of bosonic Sr. A systematic measurement of three
resonances allows precise determinations of the OFR strength and scaling law,
in agreement with coupled-channels theory. Resonant enhancement of the complex
scattering length leads to thermalization mediated by elastic and inelastic
collisions in an otherwise ideal gas. OFR could be used to control atomic
interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve
clarity. Extended supplementary material. 4 pages, 4 figures; includes
supplementary material 8 pages, 4 figures. Submitted to Physical Review
Letter
Sign problems, noise, and chiral symmetry breaking in a QCD-like theory
The Nambu-Jona-Lasinio model reduced to 2+1 dimensions has two different path
integral formulations: at finite chemical potential one formulation has a
severe sign problem similar to that found in QCD, while the other does not. At
large N, where N is the number of flavors, one can compute the probability
distributions of fermion correlators analytically in both formulations. In the
former case one finds a broad distribution with small mean; in the latter one
finds a heavy tailed positive distribution amenable to the cumulant expansion
techniques developed in earlier work. We speculate on the implications of this
model for QCD.Comment: 16 pages, 5 figures; Published version with minor changes from the
origina
Amplitude dependent frequency, desynchronization, and stabilization in noisy metapopulation dynamics
The enigmatic stability of population oscillations within ecological systems
is analyzed. The underlying mechanism is presented in the framework of two
interacting species free to migrate between two spatial patches. It is shown
that that the combined effects of migration and noise cannot account for the
stabilization. The missing ingredient is the dependence of the oscillations'
frequency upon their amplitude; with that, noise-induced differences between
patches are amplified due to the frequency gradient. Migration among
desynchronized regions then stabilizes a "soft" limit cycle in the vicinity of
the homogenous manifold. A simple model of diffusively coupled oscillators
allows the derivation of quantitative results, like the functional dependence
of the desynchronization upon diffusion strength and frequency differences. The
oscillations' amplitude is shown to be (almost) noise independent. The results
are compared with a numerical integration of the marginally stable
Lotka-Volterra equations. An unstable system is extinction-prone for small
noise, but stabilizes at larger noise intensity
Is Frost Heaving Killing Your Legumes?
Frost heaving is a serious hazard to the maintenance of legume stands on many of our Iowa soils - especially on level claypan soils. But there are some things you can do to reduce your frost heaving losses
- …