37 research outputs found

    An Examination of the Factors that Dictate the Relative Weighting of Feedback and Feedforward Input for Speech Motor Control

    Get PDF
    Speech is arguably the most important form of human communication. Fluent speech production relies on auditory feedback for the planning, execution, and monitoring of speech movements. Auditory feedback is particularly important during the acquisition of speech, however, it has been suggested that over time speakers rely less on auditory feedback as they develop robust sensorimotor representations that allow speech motor commands to be executed in a feedforward manner. The studies reported in this thesis recorded speaker’s vocal and neural responses to altered auditory feedback in order to explore the factors that dictate the relative importance of auditory feedback for speech motor control. More specifically, studies 1 through 3 examined how the role of auditory feedback changes throughout development, while studies 4 and 5 examined the relationship between vocal variability and auditory feedback control, and lastly study 6 looked at how the predictability of auditory feedback errors influences the role of auditory feedback for speech motor control. Results of the first study demonstrated that toddlers use auditory feedback to regulate their speech motor commands, supporting the long held notion that auditory feedback is important during the acquisition of speech. While mapping out the developmental trajectory of vocal and event related potential responses to altered auditory feedback, the second study demonstrated that vocal variability, rather than age, best predicts responses to altered auditory feedback. Importantly, this suggests that the maturation of the speech motor control system is not strictly dependent on age. The third study in this thesis demonstrated that children and adults show similar rates of sensorimotor adaptation, suggesting that once speech is acquired, speakers are proficient at using sensory information to modify the planning of future speech motor commands. However, since adults produced larger compensatory responses, these results also suggested that adults are more proficient at comparing incoming auditory feedback with the feedback predicted by their sensorimotor representations, as a result of possessing more precisely mapped sensorimotor representations. The results of studies four and five demonstrated that vocal variability can be used to predict the size of compensatory responses and sensorimotor adaptation to changes in one’s auditory feedback, respectively. Furthermore, these studies demonstrated that increased variability was related to increased auditory feedback control of speech. Finally, the sixth study in this thesis demonstrated that experimentally induced predictability and variability can be used to induce increases in feedforward and auditory feedback control, respectively. In conclusion, the results reported in this thesis demonstrate that age and vocal variability, both naturally occurring and experimentally induced, are important determinants of the role of auditory feedback in speech motor control

    The Role of Auditory Feedback at Vocalization Onset and Mid-Utterance

    Get PDF
    Auditory feedback plays an important role in monitoring and correcting for errors during speech production. Previous research suggests that at vocalization onset, auditory feedback is compared to a sensory prediction generated by the motor system to ensure the desired fundamental frequency (F0) is produced. After vocalization onset, auditory feedback is compared to the most recently perceived F0 in order to stabilize the vocalization. This study aimed to further investigate whether after vocalization onset, auditory feedback is used strictly to stabilize speakers’ F0, or if it is also influenced by the sensory prediction generated by the motor system. Event-related potentials (ERP) were recorded while participants produced vocalizations and heard the F0 of their auditory feedback perturbed suddenly mid-utterance by half a semitone. For half of the vocalizations, at vocalization onset, participants’ F0 was also raised by half a semitone. Thus, half of the perturbations occurred while participants heard their unaltered auditory feedback, and the other half occurred in auditory feedback that had also been perturbed 50 cents at vocalization onset. If after vocalization onset auditory feedback is strictly used to stabilize speakers’ F0, then similarly sized vocal and ERP responses would be expected across all trials, regardless of whether the perturbation occurred while listening to altered or unaltered auditory feedback. Results indicate that the perturbations to the participants’ unaltered auditory feedback resulted in larger vocal and N1 and P2 ERP responses than perturbations to their altered auditory feedback. These results suggest that after vocalization onset auditory feedback is not strictly used to stabilize speakers’ F0, but is also used to ensure the desired F0 is produced

    Social success in a noisy world: exploring the relationship between decreased sound tolerance and social profiles

    Get PDF
    Humans are inherently social creatures, yet considerable variability exists in our social behaviours. It is unclear what factors contribute to this variability. Given the complex and abundant sensory stimuli present in our daily environments, differences in sensory processing abilities may contribute to the variation observed in social behaviours. Individual differences in sensory processing may have significant effects on an individual’s capacity to navigate social settings and may influence the development and expression of social competence. Existing literature also suggests that it is common for individuals with one form of sensory processing difference, Decreased Sound Tolerance (DST), to engage in social avoidance behaviours to mitigate exposure to distressing sounds. However, limited research explores the potential relationship between DST severity and social competence. Therefore, this study investigated the relationship between DST and social competence. As such, a sample of 2095 undergraduate students completed an online survey designed to assess their DST severity and social competence. Initially, to parse the variability in social competence, scores on the multidimensional social competence scale (MSCS), underwent a k-means cluster analysis. This analysis yielded four unique social profiles based on seven social competence domains (e.g., social motivation, emotion regulation etc.). Misophonia and hyperacusis questionnaires were then used to evaluate differences in DST across the social profiles. The results indicated varying severity levels of both misophonia and hyperacusis across the four social profiles, with the individuals who reported the highest social competence exhibiting the lowest levels of DST. These findings highlight the potential relationship between sensory processing differences, such as DST, and social functioning

    Negative first impression judgements of autistic children by non-autistic adults

    Get PDF
    IntroductionAlthough autism inclusion and acceptance has increased in recent years, autistic people continue to face stigmatization, exclusion, and victimization. Based on brief 10-second videos, non-autistic adults rate autistic adults less favourably than they rate non-autistic adults in terms of traits and behavioural intentions. In the current study, we extended this paradigm to investigate the first impressions of autistic and non-autistic children by non-autistic adult raters and examined the relationship between the rater's own characteristics and bias against autistic children.MethodSegments of video recorded interviews from 15 autistic and 15 non-autistic children were shown to 346 undergraduate students in audio with video, audio only, video only, transcript, or still image conditions. Participants rated each child on a series of traits and behavioural intentions toward the child, and then completed a series of questionnaires measuring their own social competence, autistic traits, quantity and quality of past experiences with autistic people, and explicit autism stigma.ResultsOverall, autistic children were rated more negatively than non-autistic children, particularly in conditions containing audio. Raters with higher social competence and explicit autism stigma rated autistic children more negatively, whereas raters with more autistic traits and more positive past experiences with autistic people rated autistic children more positively.DiscussionThese rapid negative judgments may contribute to the social exclusion experienced by autistic children. The findings indicate that certain personal characteristics may be related to more stigmatised views of autism and decreased willingness to interact with the autistic person. The implications of the findings are discussed in relation to the social inclusion and well-being of autistic people

    Sensorimotor control of vocal production in early childhood.

    Full text link
    corecore